You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The country’s largest source of renewable energy has a long history.

Was Don Quixote a NIMBY?
Miguel de Cervantes’ hero admittedly wasn’t tilting at turbines in 1605, but for some of his contemporary readers in 17th-century Spain, windmills for grinding wheat into flour were viewed as a “dangerous new technology,” author Simon Winchester writes in his forthcoming book, The Breath of the Gods: The History and Future of the Wind. One interpretation of Cervantes’ novel might be that Quixote was “actually doing battle with progress.”
Nearly four and a half centuries later, harnessing the energy of the wind remains controversial, even if the breeze is one of humankind’s longest-utilized resources. While wind is the largest source of renewable electricity generation in the United States today, high construction costs and local opposition have more recently stymied the industry’s continued expansion. The new presidential administration — suspicious of wind’s reliability and place in the American energy mix — has also been doing its very best to stunt any future growth in the sector.
Whether you’re catching up on Trump’s latest regulatory moves, you have your own concerns about the safety of the technology, or this is your first time even thinking about this energy resource, here is the blow-by-blow — sorry! — on wind power in the U.S.
At their most basic conceptual level, wind turbines work by converting kinetic energy — the energy of an object in motion; in this case, air particles — into electrical energy that can be used to power homes, buildings, factories, and data centers.
Like hydroelectric dams, turbines do this by first converting kinetic energy into mechanical energy. The wind turns the turbine blades, which spin a rotor that is connected to a generator. Inside the generator are magnets that rotate around coils of copper wire, creating a magnetic field that pushes and pulls the electrons within the copper. Voilà — and with gratitude to Michael Faraday — now you have an electrical current that can be distributed to the grid.
Turbines typically require an average wind speed of about 9 miles per hour to generate electricity, which is why they are constructed in deserts, mountain passes, on top of hills, or in shallow coastal waters offshore, where there is less in the way to obstruct the flow of wind. Higher elevations are also windier, so utility-scale wind turbines are frequently around 330 feet tall (though the largest turbines tower 600 feet or higher).
It depends on the size of the turbine and also the wind speed. The average capacity of a new land-based wind turbine in the U.S. was 3.4 megawatts in 2023 — but that’s the “nameplate capacity,” or what the turbine would generate if it ran at optimal capacity around the clock.

In the U.S., the average capacity factor (i.e. the actual energy output) for a turbine is more like 42%, or close to two-fifths of its theoretical maximum output. The general rule of thumb is that one commercial turbine in the U.S. can power nearly 1,000 homes per month. In 2023, the latest year of data available, land-based and offshore wind turbines in the U.S. generated 425,235 gigawatt-hours of electricity, or enough to power 39 million American homes per year.
A common criticism of wind power is that it “stops working” if the wind isn’t blowing. While it’s true that wind is an intermittent resource, grid operators are used to coping with this. A renewables-heavy grid should combine different energy sources and utilize offline backup generators to prevent service interruptions during doldrums. Battery storage can also help handle fluctuations in demand and increase reliability.
At the same time, wind power is indeed dependent on, well, the wind. In 2023, for example, U.S. wind power generation dropped below 2022 levels due to lower-than-average wind speeds in parts of the Midwest. When you see a turbine that isn’t spinning, though, it isn’t necessarily because there isn’t enough wind. Turbines also have a “cut out” point at which they stop turning if it gets too windy, which protects the structural integrity of the blades and prevents Twisters-like mishaps, as well as keeps the rotor from over-spinning, which could strain or break the turbine’s internal rotating components used to generate electricity.
Though Americans have used wind power in various forms since the late 1800s, the oil crisis of the 1970s brought new interest, development, and investment in wind energy. “The American industry really got going after the suggestion from the Finns, the Swedes, the Danes,” who’d already been making advances in the technology, albeit on single-turbine scales, Winchester, the author of the forthcoming history of wind power, The Breath of the Gods, told me.
In the early 1970s, the Department of Energy issued a grant to William Heronemus, a professor at the University of Massachusetts, Amherst, to explore the potential of wind energy. Heronemus became “really enthusiastic and built wind generators on the campus,” helping to modernize turbines into the more familiar construction we see widely today, Winchester said.
Some of Heronemus’ former students helped build the world’s first multi-turbine wind farm in New Hampshire in 1981. Though the blades of that farm interfered with nearby television reception — they had to be paused during prime time — the technology “seemed to everyone to make sense,” Winchester said. The Energy Policy Act of 1992, which introduced production tax credits for renewables, spurred further development through the end of the millennium.
Heronemus, a former Naval architect, had dreamed in the 1970s of building a flotilla of floating turbines mounted on “wind ships” that were powered by converting seawater into hydrogen fuel. Early experiments in offshore wind by the Energy Research and Development Administration, the progenitor of the Department of Energy, weren’t promising due to the technological limitations of the era — even commercial onshore wind was still in its infancy, and Heronemus’ plans looked like science-fiction.
In 1991, though, the Danes — ever the leaders in wind energy — successfully constructed the Vindeby Offshore Wind Farm, complete with 11 turbines and a total installed capacity of 5 megawatts. The Blyth offshore wind farm in northern Wales soon followed, with the United States finally constructing its first grid-connected offshore wind turbines off of Maine in 2013. The Block Island wind farm, with a capacity of 30 megawatts, is frequently cited as the first true offshore wind farm in the U.S., and began operating off the coast of Rhode Island in 2016.
Though offshore wind taps into higher and more consistent wind speeds off the ocean — and, as a result, is generally considered more efficient than onshore wind — building turbines at sea comes with its own set of challenges. Due to increased installation costs and the greater wear-and-tear of enduring saltwater and storms at sea, offshore wind is generally calculated to be about twice as expensive as onshore wind. “It’s unclear if offshore wind will ever be as cheap as onshore — even the most optimistic projections documented by the National Renewable Energy Laboratory have offshore wind more expensive than the current price of onshore in 2035,” according to Brian Potter in his newsletter, Construction Physics, though he notes that “past projections have underestimated the future cost reductions of wind turbines.”

In the decade from 2014 to 2023, total wind capacity in the U.S. doubled. Onshore and offshore wind power is now responsible for over 10% of utility-scale electricity generation in the U.S., and has been the highest-producing renewable energy source in the nation since 2019. (Hydropower, the next highest-producing renewable energy source, is responsible for about 5.7% of the energy mix, by comparison.) In six states — Iowa, Kansas, Oklahoma, New Mexico, South Dakota, and North Dakota — onshore wind makes up more than a third of the current electricity mix, Climate Central reports.
Offshore wind has been slower to grow in the U.S. Even during the Biden administration, when the government targeted developing 30 gigawatts of offshore wind capacity by 2030, the industry faced financing challenges, transmission and integration obstacles, and limits in access to a skilled workforce, per a 2024 paper in Energy Research & Social Science. That same year, the Department of Energy reported that the nation had a total of 80,523 megawatts for offshore wind in operation and in the pipeline, which, under ideal conditions, could power 26 million homes. Many of those offshore projects and plans now face an uncertain future under the Trump administration.
Though we’re far removed from the 1880s, when suspicious Scots dismissed wind energy pioneer James Blyth’s home turbine as “the devil’s work,” there are still plenty of persistent concerns about the safety of wind power to people and animals.
Some worry about onshore wind turbines’ effects on people, including the perceived dangers of electromagnetic fields, shadow flicker from the turning blades, and sleep disturbance or stress. Per a 2014 systematic review of 60 peer-reviewed studies on wind turbines and human health by the National Institutes of Health, while there was “evidence to suggest that wind turbines can be a source of annoyance to some people, there was no evidence demonstrating a direct causal link between living in proximity to wind turbines and more serious physiological health effects.” The topic has since been extensively studied, with no reputable research concluding that turbines have poor health impacts on those who live near them.
Last year, the blade of a turbine at Vineyard Wind 1 broke and fell into the water, causing the temporary closure of beaches in Nantucket to protect people from the fiberglass debris. While no one was ultimately injured, GE Vernova, which owns Vineyard Wind, agreed earlier this year to settle with the town for $10.5 million to compensate for the tourism and business losses that resulted from the failure. Thankfully, as my colleague Jael Holzman has written, “major errors like blade failures are incredibly rare.”
There are also concerns about the dangers of wind turbines to some wildlife. Turbines do kill birds, including endangered golden eagles, which has led to opposition from environmental and local activist groups. But context is also important: The U.S. Fish & Wildlife Service has found that wind farms “represent just 0.03% of all human-related bird deaths in the U.S.” (Illegal shootings, for example, are the greatest cause of golden eagle deaths.) The continued use of fossil fuels and the ecological impacts of climate change also pose a far graver threat to birds than wind farms do. Still, there is room for discussion and improvement: The California Department of Fish and Wildlife issued a call earlier this year for proposals to help protect golden eagles from turbine collisions in its major wind resource areas.
Perhaps the strongest objection to offshore wind has come from concern for whales. Though there has been an ongoing “unusual mortality event” for whales off the East Coast dating back to 2016 — about the same time the burgeoning offshore wind industry took off in the United States — the two have been falsely correlated (especially by groups with ties to the fossil fuel industry). A recent government impact report ordered by Republicans even found that “NOAA Fisheries does not anticipate any death or serious injury to whales from offshore wind-related actions and has not recorded marine mammal deaths from offshore wind activities.” Still, that hasn’t stopped Republican leaders — including the president — from claiming offshore wind is making whales “a little batty.”
Polling by Heatmap has found that potential harm to wildlife is a top concern of both Democrats and Republicans when it comes to the deployment of renewable energy. Although there has been “no evidence to date that the offshore wind build-out off the Atlantic coast has harmed a single whale … studies have shown that activities related to offshore wind could harm a whale, which appears to be enough to override the benefits for some people,” my colleague Jael has explained. A number of environmental groups are attempting to prevent offshore and land-based wind development on conservationist grounds, to varying degrees of success. Despite these reservations, though, our polling has found that Americans on the coast largely support offshore wind development.
Aesthetic concerns are another reason wind faces opposition. The proposed Lava Ridge wind farm in Idaho, which was Heatmap’s most imperiled renewable energy project last year, faced intense opposition, ostensibly due to the visibility of the turbines from the Minidoka National Historic Site, the site of a Japanese internment camp. Coastal homeowners have raised the same complaint about offshore wind that would be visible from the beach, like the Skipjack offshore wind project, which would be situated off the coast of Maryland.
Not good. As one of President Trump’s first acts in office, he issued an executive order that the government “shall not issue new or renewed approvals, rights of way, permits, leases, or loans for onshore or offshore wind projects” until the completion of a “comprehensive assessment” of the industry’s impacts on the economy and the environment. Eight months later, federal agencies were still not processing applications for onshore wind projects.
Offshore wind is in even more trouble because such projects are sited entirely in federal waters. As of late July, the Bureau of Ocean Energy Management had rescinded all designated wind energy areas — a decision that applies to some 3.5 million acres of federal waters, including the Central Atlantic, California, and Oregon. The Department of the Interior has also made moves to end what it calls the “special treatment for unreliable energy sources, such as wind,” including by “evaluating whether to stop onshore wind development on some federal lands and halting future offshore wind lease sales.” The Interior Department will also look into how “constructing and operating wind turbines might affect migratory bird populations.”
The One Big Beautiful Bill Act, meanwhile, put strict restrictions on tax credits available to wind developers. Per Cleanview, the bill jeopardizes some 114 gigawatts of wind energy projects, while the Center for American Progress writes that “more than 17,000 jobs are connected to offshore wind power projects that are already canceled, on hold, or at risk from the Trump administration’s attacks on wind power.”
The year 2024 marked a record for new wind power capacity, with 117 gigawatts of wind energy installed globally. China in particular has taken a keen interest in constructing new wind farms, installing 26 gigawatts worth, or about 5,300 turbines, between January and May of last year alone.
Still, there are significant obstacles to the buildout of wind energy even outside of the United States, including competition from solar, which is now the cheapest and most widely deployed renewable energy resource in the world. High initial construction costs, deepened by inflation and supply-chain issues, have also stymied wind development.
There are an estimated 424 terawatts worth of wind energy available on the planet, and current wind turbines tap into just half a percent of that. According to Columbia Business School’s accounting, if maximized, wind has the potential to “abate 10% to 20% of CO2 emissions by 2050, through the clean electrification of power, heat, and road transport.”
Wind is also a heavy player in the Net Zero Emissions by 2050 Scenario, which aims for
7,100 terawatt hours of wind electricity generation worldwide by the end of the decade, per the International Energy Agency. But current annual growth would need to increase annual capacity additions from about 115 gigawatts in 2023 to 340 gigawatts in 2030. “Far greater policy and private-sector efforts are needed to achieve this level of capacity growth,” IEA notes, “with the most important areas for improvement being facilitating permitting for onshore wind and cost reductions for offshore wind.”
Wind turbines continue to become more efficient and more economical. Many of the advances have come in the form of bigger turbines, with the average height of a hub for a land-based turbine increasing 83% since the late 1990s. The world’s most powerful offshore turbine, Vestas’ V236-15.0 megawatt prototype, is, not coincidentally, also the world’s tallest, at 919 feet.
Advanced manufacturing techniques, such as the use of carbon fiber composites in rotor blades and 3D printed materials, could also lead to increases in efficiency. In a 2024 report, NREL anticipated that such innovations could potentially “unlock 80% more economically viable wind energy capacity within the contiguous United States.”
Floating offshore wind farms are another area of active innovation. Unlike the fixed-foundation turbines mainly used offshore today, floating turbines could be installed in deep waters and allow for development on trickier coastlines like off of Oregon and Washington state. Though there are no floating offshore wind farms in the United States yet, there are an estimated 266 gigawatts of floating turbine capacity in the pipeline globally.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Wildfires are moving east.
There were 77,850 wildfires in the United States in 2025, and nearly half of those — 49% — ignited east of the Mississippi River, according to statistics released last week by the National Interagency Fire Center. That might come as a surprise to some in the West, who tend to believe they hold the monopoly on conflagrations (along with earthquakes, tsunamis, and megalomaniac tech billionaires).
But if you lump the Central Plains and Midwest states of Minnesota, Iowa, Missouri, Arkansas, Oklahoma, and Texas along with everything to their east — the swath of the nation collectively designated as the Eastern and Southern Regions by the U.S. Forest Service — the wildfires in the area made up more than two-thirds of total ignitions last year.

Like fires in the West, wildfires in the eastern and southeastern U.S. are increasing. Over the past 40 years, the region has seen a 10-fold jump in the frequency of large burns. (Many risk factors contribute to wildfires, including but not limited to climate change.)
What’s exciting to wildfire researchers and managers, though, is the idea that they could catch changes to the Eastern fire regime early, before the situation spirals into a feedback loop or results in a major tragedy. “We have the opportunity to get ahead of the wildfire problem in the East and to learn some of the lessons that we see in the West,” Donovan said.
Now that effort has an organizing body: the Eastern Fire Network. Headed by Erica Smithwick, a professor in Penn State’s geography department, the research group formed late last year with the help of a $1.7 million, three-year grant from the Gordon and Betty Moore Foundation, a partner with the U.S. National Science Foundation, with the goal of creating an informed research agenda for studying fire in the East. “It was a very easy thing to have people buy into because the research questions are still wide open here,” Smithwick told me.
Though the Eastern U.S. is finally exiting a three-week block of sub-freezing temperatures, the hot, dry days of summer are still far from most people’s minds. But the wildland-urban interface — that is, the high-fire-risk communities that abut tracts of undeveloped land — is more extensive in the East than in the West, with up to 72% of the land in some states qualifying as WUI. The region is also much more densely populated, meaning practically every wildfire that ignites has the potential to threaten human property and life.
It’s this density combined with the prevalent WUI that most significantly distinguishes Eastern fires from those in the comparatively rural West. One fire manager warned Smithwick that a worst-case-scenario wildfire could run across the entirety of New Jersey, the most populous state in the nation, in just 48 hours.
Generally speaking, though, wildfires in the East are much smaller than those in the West. The last megafire in the Forest Service’s Southern Region was as far west in its boundaries as you can get: the 2024 Smokehouse Creek fire in Texas and Oklahoma, which burned more than a million acres. The Eastern Region hasn’t had a megafire exceeding 100,000 acres in the modern era. For research purposes, a “large” wildfire in the East is typically defined as being 200 hectares or more in size, the equivalent of about 280 football fields; in the West, a “large” wildfire is twice that, 400 hectares or more.
But what the eastern half of the country lacks in total acres burned (for that statistic, Alaska edges out the Southern Region), it makes up for in the total number of reported ignitions. In 2025, for example, the state of Maine alone recorded 250 fires in August, more than doubling its previous record of just over 100 fires. “The East is highly fragmented,” Donovan, who is contributing to the Eastern Fire Network’s research, told me. “We have a lot of development here compared to the West, and so it’s much more challenging for fires to spread.”
Fires in the West tend to be long-duration events, burning for weeks or even months; fires in the East are often contained within 48 hours. In New Jersey, for example, “smaller, fragmented forests, which are broken up by numerous roads and the built environment, [allow] firefighters to move ahead of a wildfire to improve firebreaks and begin backfiring operations to help slow the forward progression,” a spokesperson for the New Jersey Forest Fire Service told me.
The parcelized nature of the eastern states is also reflected in who is responding to the fires. It is more common for state agencies and local departments — including many volunteer firefighting departments — to be the ones on the scene, Debbie Miley, the executive director of the National Wildfire Suppression Association, a trade group representing private wildland fire service contractors, told me by email. On the one hand, the local response makes sense; smaller fires require smaller teams to fight them. But the lack of a joint effort, even within a single state, means broader takeaways about mitigation and adaptation can be lost.
“Many eastern states have strong state forestry agencies and local departments that handle wildfire as part of an ‘all hazards’ portfolio,” Miley said. “In the West, there’s often a deeper bench of personnel and systems oriented around long-duration wildfire campaigns (though that varies by state).”
All of this feeds into why Smithwick believes the Eastern Fire Network is necessary: because of this “intermingling, at a very fine scale, of different jurisdictional boundaries,” conversations about fire management and the changing regimes in the region happen in parallel, rather than with meaningful coordination. Even within a single state, fire management might be divided between different agencies — such as the Game Commission and the Bureau of Forestry, which share fire management responsibilities in Pennsylvania. Fighting fires also often involves working with private landowners in the East; in the West, on the other hand, roughly two-thirds of wildfires burn on public land, which a single agency — e.g. the Bureau of Land Management, Forest Service, or Park Service — manages.
But “wildfire risk is going to be different than in the West, and maybe more variable,” Smithwick told me. Identifying the appropriate research questions about that risk is one of the most important objectives of the Eastern Fire Network.
Bad wildfires are the result of fuel and weather conditions aligning. “We generally know what the fuels are [in the East] and how well they burn,” Smithwick said. But weather conditions and their variability are a greater question mark.
Nationally, fire and emergency managers rely on indices to predict fire-weather risk based on humidity, temperature, and wind. But while those indices are dialed in for the Western states, they’re less well understood in the East. “We hope to look at case studies of recent fires that have occurred in the 2024 and 2025 window to look at the antecedent conditions and to use those as case studies for better understanding the mechanisms that led to that wildfire,” Smithwick said.
Learning more about the climatological mechanisms driving dry spells in the region is another explicit goal. Knowing how dry spells evolve, and where, will help researchers and eventually policymakers to identify mitigation strategies for locations most at risk. Smithwick also expects to learn that some areas might not be at high risk: “We can tell you that this is not something your community needs to invest in right now,” she told me.
Different management practices, jurisdictions, terrains, and fuel types mean solutions in the East will look different from those in the West, too. As Donovan’s research has found, the unmanaged regrowth of forests in the northeast in particular after centuries of deforestation has led to an increase in trees and shrubs that are prone to wildfires. Due to the smaller forest tracts in the area, mechanical thinning is a more realistic solution in eastern forests than on large, sprawling, remote western lands.
Prescribed burns tend to be more common and more readily accepted practices in the East, too. Florida leads the nation in preventative fires, and the New Jersey Forest Fire Service aims to treat 25,000 acres of forest, grasslands, and marshlands with prescribed fire annually.
The winter storms that swept across the Eastern and Southern regions of the United States last month have the potential to queue up a bad fire season once the land starts to thaw and eventually dry out. Though the picture in the Eastern Region is still coming into focus depending on what happens this spring, in the Southern region the storms have created “potential compaction of the abundant grasses across the Plains, in addition to ice damage in pine-dominant areas farther east,” the National Interagency Fire Center wrote in last Monday’s update to its nationwide fire outlook. (The nearly million-acre Pinelands of New Jersey are similarly a fire-adapted ecosystem and are “comparable in volatility to the chaparral shrublands found in California and southern Oregon,” the spokesperson told me.)
The compaction of grasses is significant because, although they will take longer to dry and become a fuel source, it will ultimately leave the Southern region covered with a dense, flammable fuel when summer is in full swing. Beyond the Plains, in the Southeast’s pine forests, the winter-damaged trees could cast “abundant” pine needles and “other fine debris” that could dry out and become flammable as soon as a few weeks from now. “Increased debris burning will also amplify ignitions and potential escapes, enhancing significant fire potential during warmer and drier weather that will return in short order,” NIFC goes on to warn.
Though the historically wet Northeast and humid Southeast seem like unlikely places to worry about large wildfires, as conditions change, nothing is certain. “If we learned anything from fire science over the past few decades, it’s that anywhere can burn under the right conditions,” Smithwick said. “We are burning in the tundra; we are burning in Canada; we are burning in all of these places that may not have been used to extreme wildfire situations.”
“These fires could have a large economic and social cost,” Smithwick added, “and we have not prepared for them.”
New guidelines for the clean fuel tax credit reward sustainable agriculture practices — but could lead to greater emissions anyway.
The Treasury Department published proposed guidance last week for claiming the clean fuel tax credit — one of the few energy subsidies that was expanded, rather than diminished, by Trump’s One Big Beautiful Bill Act. There was little of note in the proposal, since many of the higher-stakes climate-related decisions about the tax credit were made by Congress in the statute itself. But it did clear up one point of uncertainty: The guidance indicates that the administration will reward biofuel crops cultivated using “climate-smart agriculture” practices.
On the one hand, it’s a somewhat surprising development simply because of Trump’s record of cutting anything with climate in the title. Last April, the U.S. Department of Agriculture terminated grants from a Biden-era “Climate-Smart Commodities” program, calling it a “slush fund,” and refashioned it into the “Advancing Markets for Producers” initiative.
On the other hand, depending on how the Trump administration implements it, integrating climate-smart agriculture into the clean fuel tax credit could become its own kind of slush fund, paying out billions in taxpayer dollars for questionable benefits and with little accountability.
The clean fuel tax credit, known by its section of the tax code as 45Z, subsidizes the production of low-carbon transportation fuels for vehicles and aviation. Companies can earn up to $1 per gallon depending on the carbon intensity of the production process.
Sourcing corn and soy from farms that use climate-smart agriculture practices is one potential way for biofuel producers to claim more of the credit. “Climate-smart agriculture” can refer to a wide variety of techniques that increase the amount of soil stored in carbon or otherwise reduce emissions, such as reducing soil disturbance, planting cover crops, or implementing nutrient management practices that reduce nitrous oxide emissions. But to date, the federal government has not issued guidance for how to account for these practices.
The Biden administration put out proposed rules just before leaving office that were quite controversial, Nikita Pavlenko, the fuels and aviation program director at the International Council on Clean Transportation, told me. The methodology relied entirely on modeling and did not require farmers to take any real-life measurements of soil carbon before or after adopting the climate-smart practice. The rules also assume that these climate-smart practices would be implemented anew, when in reality many farms have been practicing some of them for years without subsidies. That means ethanol producers could potentially get free money to buy corn from farms that adopted no-till practices long ago, with no additional benefit for the climate.
“These climate-smart ag practices are a rare example of bipartisanship, for what it’s worth, and there’s a lot of money to be made in it,” Pavlenko told me. “But I’m not sure exactly how much actual greenhouse gas reduction or sequestration.”
According to estimates by Pavlenko’s group, the lack of an additionality requirement could lead to the government paying $2.1 billion in subsidies for farms to keep doing what they were already doing, with no new benefits for the climate.
I should note that the climate integrity of the clean fuel tax credit, also known as 45Z, was already compromised by changes made in the OBBBA. Subsidies for crop-based biofuels can indirectly drive deforestation. Prior to Trump’s tax law, producers would have had to take into account emissions related to land use changes when they calculated the carbon intensity of their fuel. Now they don’t. The change will make it much easier for a fuel like ethanol, which is already heavily subsidized through other programs, to qualify.
That, in turn, could cost taxpayers an estimated five times as much per year. When the subsidy was first created in the Inflation Reduction Act, the Joint Committee on Taxation estimated that it would cost taxpayers $2.9 billion over three years. After the OBBBA passed, extending the credit by two years, the committee’s estimate was $25.7 billion.
The existing proposal for incorporating climate-smart agriculture practices into the tax credit calculation would likely push that estimate even higher. After the Biden administration released its proposal last January, groups like Pavlenko’s submitted comments critiquing the methods and suggesting changes. But after the Trump administration took over, it was unclear what would happen with it, he said.
Last week’s guidance was still somewhat vague about what’s next for the climate-smart agriculture calculations, saying only that the proposal published in January is still “undergoing testing, peer review, and public comment,” and that the Treasury expects it to be ready some time in 2026. In the meantime, the Treasury will be taking public comments on the broader 45Z guidance through April 6 and hold a public hearing on May 28.
On Tesla’s sunny picture, Chinese nuclear, and Bad Bunny’s electric halftime show
Current conditions: The Seattle Seahawks returned home to a classically rainy, overcast city from their win in last night’s Super Bowl, though the sun is expected to come out for Wednesday's victory parade • Severe Tropical Cyclone Mitchell is pummeling Western Australia with as much as 8 inches of rain • Flash floods from Storm Marta have killed at least four in Morocco.
Orsted’s two major offshore wind projects in the United States are back on track to be completed on schedule, its chief executive said. Rasmus Errboe told the Financial Times that the Revolution Wind and Sunrise Wind projects in New England would come online in the latter half of this year and in 2027, respectively. “We are fully back to work and construction on both projects is moving forward according to plan,” Errboe said. The U.S. has lost upward of $34 billion worth of clean energy projects since President Donald Trump returned to office, as I wrote last week. A new bipartisan bill introduced in the House last week to reform the federal permitting process would bar the White House from yanking back already granted permits. For now, however, the Trump administration has signaled its plans to appeal federal courts’ decisions to rule against its actions to halt construction on offshore turbines.
The fight over the billions in federal funding the White House is holding up for the Gateway rail project between New Jersey and New York, meanwhile, heated up over the weekend. On Friday night, a federal judge ordered the Trump administration to unfreeze the nearly $16 billion to the project, just hours after construction ground to a halt as funding ran dry. In her ruling, U.S. District Judge Jeannette Vargas of the Southern District of New York wrote that “plaintiffs have adequately shown that the public interest would be harmed by a delay in a critical infrastructure project.” Trump had his own idea in mind. Over the weekend, the White House proposed releasing the money only if Senate Minority Leader Chuck Schumer of New York agreed to rename Penn Station after Trump.
Tesla has started hiring staff to ramp up production of solar panels as the company looks to build 100 gigawatts of panel-manufacturing capacity supplied with raw materials produced in America. In a job posting on LinkedIn, Seth Winger, Tesla’s senior manager for solar products engineering, wrote that the panel-producing buildout was “an audacious, ambitious project.” For that, he wrote, “we need audacious, ambitious engineers and scientists to help us grow to massive scale. If you want to solve tough manufacturing problems at breakneck speed and help the U.S. breakthrough on renewable energy generation, come join us.” One of the listings indicated that the target date for bringing the new factories online was the “end of 2028,” giving an indication of timing that Reuters noted had been previously absent from Elon Musk’s public statements. Bloomberg reported last week that Tesla is already looking at sites in New York, Arizona, and Idaho for its manufacturing expansion.
The Trump administration tried to yank permits from the offshore wind projects off New England on the grounds that the towering turbines caused more ecological destruction than the electricity is worth. On Friday, however, Trump signed a proclamation reopening a giant marine preserve in the Atlantic Ocean to commercial fishing. First established at the end of the Obama administration, the Northeast Canyons and Seamounts Marine National Monument lies 130 miles off the coast of Cape Cod, encompassing what The New York Times described as “an area the size of Connecticut that is home to dolphins, endangered whales, sea turtles, and ancient deep-sea corals.” While Trump lifted the ban on commercial fishing in the zone during his first administration, President Joe Biden reinstated the restrictions. But this isn’t the first time Trump reopened a national marine national monument to fishing. In April, he ended protections for the Pacific Islands Heritage Marine National Monument located 750 miles west of Hawaii and designated by President George W. Bush in 2009.
Sign up to receive Heatmap AM in your inbox every morning:
Connecitcut’s Department of Insurance has launched a website that displays extensive information about the climate risk of every property in the state in what E&E News called “an unprecedented move to alert residents and to promote flood insurance.” The details include each property’s history of damage from floods and other events predicted to get worse as the planet warms. “A single risk score does not fully convey flood and climate risk,” department spokesperson Mary Quinn said. The department plans a marketing campaign this year with ads on radio, TV, and social media, and workshops for insurance agents on how to use the website. Nationwide, climate change is already raising household costs by $900 per year, as Heatmap’s Matthew Zeitlin reported last year. Wildfires have already “destroyed California’s insurance market,” according to an interview with Heatmap's Shift Key podcast last year with an expert at the University of Pennsylvania’s Wharton School.
Unit 1 of the Taipingling nuclear power station in China’s Guangdong has reached criticality seven years after construction began on the gigawatt-sized Hualong One reactor. The debut atom-splitting means the newest reactor is months, if not weeks, from entering into commercial operation. If that enticingly single-digit number of years to build a piece of infrastructure that takes the U.S. more than a decade wasn’t enough of a sign of China’s nuclear strengths, the country this week hit another milestone on a separate atomic station. At the Zhangzhou-3 nuclear reactor, workers last week installed the inner steel dome of the containment building.

Nearly a decade after Puerto Rico’s power grid collapsed and plunged America’s most populous territory into the second-longest blackout in world history, the island’s biggest musical star performed a Super Bowl halftime show that included linemen working on transformers. Bad Bunny’s performance, a revue of his reggaeton hits, served as an ode to what he called “my motherland, my homeland, Puerto Rico.” The grid still suffers regular outages. When it’s working, the power system sends occasional surges through wires that fry appliances. Electricity rates are higher than almost any state, despite Puerto Rico suffering worse poverty rates than Mississippi. At one point, Bad Bunny climbed a utility pole on stage waving a light-blue Puerto Rican flag, a symbol of the movement to establish the island territory as its own independent nation. It was a powerful political statement at America’s most-watched sporting event. For energy nerds, it was a rare opportunity to reflect on one of the worst, most prolonged infrastructure disasters in modern American history.