You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The country’s largest source of renewable energy has a long history.
Was Don Quixote a NIMBY?
Miguel de Cervantes’ hero admittedly wasn’t tilting at turbines in 1605, but for some of his contemporary readers in 17th-century Spain, windmills for grinding wheat into flour were viewed as a “dangerous new technology,” author Simon Winchester writes in his forthcoming book, The Breath of the Gods: The History and Future of the Wind. One interpretation of Cervantes’ novel might be that Quixote was “actually doing battle with progress.”
Nearly four and a half centuries later, harnessing the energy of the wind remains controversial, even if the breeze is one of humankind’s longest-utilized resources. While wind is the largest source of renewable electricity generation in the United States today, high construction costs and local opposition have more recently stymied the industry’s continued expansion. The new presidential administration — suspicious of wind’s reliability and place in the American energy mix — has also been doing its very best to stunt any future growth in the sector.
Whether you’re catching up on Trump’s latest regulatory moves, you have your own concerns about the safety of the technology, or this is your first time even thinking about this energy resource, here is the blow-by-blow — sorry! — on wind power in the U.S.
At their most basic conceptual level, wind turbines work by converting kinetic energy — the energy of an object in motion; in this case, air particles — into electrical energy that can be used to power homes, buildings, factories, and data centers.
Like hydroelectric dams, turbines do this by first converting kinetic energy into mechanical energy. The wind turns the turbine blades, which spin a rotor that is connected to a generator. Inside the generator are magnets that rotate around coils of copper wire, creating a magnetic field that pushes and pulls the electrons within the copper. Voilà — and with gratitude to Michael Faraday — now you have an electrical current that can be distributed to the grid.
Turbines typically require an average wind speed of about 9 miles per hour to generate electricity, which is why they are constructed in deserts, mountain passes, on top of hills, or in shallow coastal waters offshore, where there is less in the way to obstruct the flow of wind. Higher elevations are also windier, so utility-scale wind turbines are frequently around 330 feet tall (though the largest turbines tower 600 feet or higher).
It depends on the size of the turbine and also the wind speed. The average capacity of a new land-based wind turbine in the U.S. was 3.4 megawatts in 2023 — but that’s the “nameplate capacity,” or what the turbine would generate if it ran at optimal capacity around the clock.
U.S. Department of Energy
In the U.S., the average capacity factor (i.e. the actual energy output) for a turbine is more like 42%, or close to two-fifths of its theoretical maximum output. The general rule of thumb is that one commercial turbine in the U.S. can power nearly 1,000 homes per month. In 2023, the latest year of data available, land-based and offshore wind turbines in the U.S. generated 425,235 gigawatt-hours of electricity, or enough to power 39 million American homes per year.
A common criticism of wind power is that it “stops working” if the wind isn’t blowing. While it’s true that wind is an intermittent resource, grid operators are used to coping with this. A renewables-heavy grid should combine different energy sources and utilize offline backup generators to prevent service interruptions during doldrums. Battery storage can also help handle fluctuations in demand and increase reliability.
At the same time, wind power is indeed dependent on, well, the wind. In 2023, for example, U.S. wind power generation dropped below 2022 levels due to lower-than-average wind speeds in parts of the Midwest. When you see a turbine that isn’t spinning, though, it isn’t necessarily because there isn’t enough wind. Turbines also have a “cut out” point at which they stop turning if it gets too windy, which protects the structural integrity of the blades and prevents Twisters-like mishaps, as well as keeps the rotor from over-spinning, which could strain or break the turbine’s internal rotating components used to generate electricity.
Though Americans have used wind power in various forms since the late 1800s, the oil crisis of the 1970s brought new interest, development, and investment in wind energy. “The American industry really got going after the suggestion from the Finns, the Swedes, the Danes,” who’d already been making advances in the technology, albeit on single-turbine scales, Winchester, the author of the forthcoming history of wind power, The Breath of the Gods, told me.
In the early 1970s, the Department of Energy issued a grant to William Heronemus, a professor at the University of Massachusetts, Amherst, to explore the potential of wind energy. Heronemus became “really enthusiastic and built wind generators on the campus,” helping to modernize turbines into the more familiar construction we see widely today, Winchester said.
Some of Heronemus’ former students helped build the world’s first multi-turbine wind farm in New Hampshire in 1981. Though the blades of that farm interfered with nearby television reception — they had to be paused during prime time — the technology “seemed to everyone to make sense,” Winchester said. The Energy Policy Act of 1992, which introduced production tax credits for renewables, spurred further development through the end of the millennium.
Heronemus, a former Naval architect, had dreamed in the 1970s of building a flotilla of floating turbines mounted on “wind ships” that were powered by converting seawater into hydrogen fuel. Early experiments in offshore wind by the Energy Research and Development Administration, the progenitor of the Department of Energy, weren’t promising due to the technological limitations of the era — even commercial onshore wind was still in its infancy, and Heronemus’ plans looked like science-fiction.
In 1991, though, the Danes — ever the leaders in wind energy — successfully constructed the Vindeby Offshore Wind Farm, complete with 11 turbines and a total installed capacity of 5 megawatts. The Blyth offshore wind farm in northern Wales soon followed, with the United States finally constructing its first grid-connected offshore wind turbines off of Maine in 2013. The Block Island wind farm, with a capacity of 30 megawatts, is frequently cited as the first true offshore wind farm in the U.S., and began operating off the coast of Rhode Island in 2016.
Though offshore wind taps into higher and more consistent wind speeds off the ocean — and, as a result, is generally considered more efficient than onshore wind — building turbines at sea comes with its own set of challenges. Due to increased installation costs and the greater wear-and-tear of enduring saltwater and storms at sea, offshore wind is generally calculated to be about twice as expensive as onshore wind. “It’s unclear if offshore wind will ever be as cheap as onshore — even the most optimistic projections documented by the National Renewable Energy Laboratory have offshore wind more expensive than the current price of onshore in 2035,” according to Brian Potter in his newsletter, Construction Physics, though he notes that “past projections have underestimated the future cost reductions of wind turbines.”
Scott Eisen/Getty Images
In the decade from 2014 to 2023, total wind capacity in the U.S. doubled. Onshore and offshore wind power is now responsible for over 10% of utility-scale electricity generation in the U.S., and has been the highest-producing renewable energy source in the nation since 2019. (Hydropower, the next highest-producing renewable energy source, is responsible for about 5.7% of the energy mix, by comparison.) In six states — Iowa, Kansas, Oklahoma, New Mexico, South Dakota, and North Dakota — onshore wind makes up more than a third of the current electricity mix, Climate Central reports.
Offshore wind has been slower to grow in the U.S. Even during the Biden administration, when the government targeted developing 30 gigawatts of offshore wind capacity by 2030, the industry faced financing challenges, transmission and integration obstacles, and limits in access to a skilled workforce, per a 2024 paper in Energy Research & Social Science. That same year, the Department of Energy reported that the nation had a total of 80,523 megawatts for offshore wind in operation and in the pipeline, which, under ideal conditions, could power 26 million homes. Many of those offshore projects and plans now face an uncertain future under the Trump administration.
Though we’re far removed from the 1880s, when suspicious Scots dismissed wind energy pioneer James Blyth’s home turbine as “the devil’s work,” there are still plenty of persistent concerns about the safety of wind power to people and animals.
Some worry about onshore wind turbines’ effects on people, including the perceived dangers of electromagnetic fields, shadow flicker from the turning blades, and sleep disturbance or stress. Per a 2014 systematic review of 60 peer-reviewed studies on wind turbines and human health by the National Institutes of Health, while there was “evidence to suggest that wind turbines can be a source of annoyance to some people, there was no evidence demonstrating a direct causal link between living in proximity to wind turbines and more serious physiological health effects.” The topic has since been extensively studied, with no reputable research concluding that turbines have poor health impacts on those who live near them.
Last year, the blade of a turbine at Vineyard Wind 1 broke and fell into the water, causing the temporary closure of beaches in Nantucket to protect people from the fiberglass debris. While no one was ultimately injured, GE Vernova, which owns Vineyard Wind, agreed earlier this year to settle with the town for $10.5 million to compensate for the tourism and business losses that resulted from the failure. Thankfully, as my colleague Jael Holzman has written, “major errors like blade failures are incredibly rare.”
There are also concerns about the dangers of wind turbines to some wildlife. Turbines do kill birds, including endangered golden eagles, which has led to opposition from environmental and local activist groups. But context is also important: The U.S. Fish & Wildlife Service has found that wind farms “represent just 0.03% of all human-related bird deaths in the U.S.” (Illegal shootings, for example, are the greatest cause of golden eagle deaths.) The continued use of fossil fuels and the ecological impacts of climate change also pose a far graver threat to birds than wind farms do. Still, there is room for discussion and improvement: The California Department of Fish and Wildlife issued a call earlier this year for proposals to help protect golden eagles from turbine collisions in its major wind resource areas.
Perhaps the strongest objection to offshore wind has come from concern for whales. Though there has been an ongoing “unusual mortality event” for whales off the East Coast dating back to 2016 — about the same time the burgeoning offshore wind industry took off in the United States — the two have been falsely correlated (especially by groups with ties to the fossil fuel industry). A recent government impact report ordered by Republicans even found that “NOAA Fisheries does not anticipate any death or serious injury to whales from offshore wind-related actions and has not recorded marine mammal deaths from offshore wind activities.” Still, that hasn’t stopped Republican leaders — including the president — from claiming offshore wind is making whales “a little batty.”
Polling by Heatmap has found that potential harm to wildlife is a top concern of both Democrats and Republicans when it comes to the deployment of renewable energy. Although there has been “no evidence to date that the offshore wind build-out off the Atlantic coast has harmed a single whale … studies have shown that activities related to offshore wind could harm a whale, which appears to be enough to override the benefits for some people,” my colleague Jael has explained. A number of environmental groups are attempting to prevent offshore and land-based wind development on conservationist grounds, to varying degrees of success. Despite these reservations, though, our polling has found that Americans on the coast largely support offshore wind development.
Aesthetic concerns are another reason wind faces opposition. The proposed Lava Ridge wind farm in Idaho, which was Heatmap’s most imperiled renewable energy project last year, faced intense opposition, ostensibly due to the visibility of the turbines from the Minidoka National Historic Site, the site of a Japanese internment camp. Coastal homeowners have raised the same complaint about offshore wind that would be visible from the beach, like the Skipjack offshore wind project, which would be situated off the coast of Maryland.
Not good. As one of President Trump’s first acts in office, he issued an executive order that the government “shall not issue new or renewed approvals, rights of way, permits, leases, or loans for onshore or offshore wind projects” until the completion of a “comprehensive assessment” of the industry’s impacts on the economy and the environment. Eight months later, federal agencies were still not processing applications for onshore wind projects.
Offshore wind is in even more trouble because such projects are sited entirely in federal waters. As of late July, the Bureau of Ocean Energy Management had rescinded all designated wind energy areas — a decision that applies to some 3.5 million acres of federal waters, including the Central Atlantic, California, and Oregon. The Department of the Interior has also made moves to end what it calls the “special treatment for unreliable energy sources, such as wind,” including by “evaluating whether to stop onshore wind development on some federal lands and halting future offshore wind lease sales.” The Interior Department will also look into how “constructing and operating wind turbines might affect migratory bird populations.”
The One Big Beautiful Bill Act, meanwhile, put strict restrictions on tax credits available to wind developers. Per Cleanview, the bill jeopardizes some 114 gigawatts of wind energy projects, while the Center for American Progress writes that “more than 17,000 jobs are connected to offshore wind power projects that are already canceled, on hold, or at risk from the Trump administration’s attacks on wind power.”
The year 2024 marked a record for new wind power capacity, with 117 gigawatts of wind energy installed globally. China in particular has taken a keen interest in constructing new wind farms, installing 26 gigawatts worth, or about 5,300 turbines, between January and May of last year alone.
Still, there are significant obstacles to the buildout of wind energy even outside of the United States, including competition from solar, which is now the cheapest and most widely deployed renewable energy resource in the world. High initial construction costs, deepened by inflation and supply-chain issues, have also stymied wind development.
There are an estimated 424 terawatts worth of wind energy available on the planet, and current wind turbines tap into just half a percent of that. According to Columbia Business School’s accounting, if maximized, wind has the potential to “abate 10% to 20% of CO2 emissions by 2050, through the clean electrification of power, heat, and road transport.”
Wind is also a heavy player in the Net Zero Emissions by 2050 Scenario, which aims for
7,100 terawatt hours of wind electricity generation worldwide by the end of the decade, per the International Energy Agency. But current annual growth would need to increase annual capacity additions from about 115 gigawatts in 2023 to 340 gigawatts in 2030. “Far greater policy and private-sector efforts are needed to achieve this level of capacity growth,” IEA notes, “with the most important areas for improvement being facilitating permitting for onshore wind and cost reductions for offshore wind.”
Wind turbines continue to become more efficient and more economical. Many of the advances have come in the form of bigger turbines, with the average height of a hub for a land-based turbine increasing 83% since the late 1990s. The world’s most powerful offshore turbine, Vestas’ V236-15.0 megawatt prototype, is, not coincidentally, also the world’s tallest, at 919 feet.
Advanced manufacturing techniques, such as the use of carbon fiber composites in rotor blades and 3D printed materials, could also lead to increases in efficiency. In a 2024 report, NREL anticipated that such innovations could potentially “unlock 80% more economically viable wind energy capacity within the contiguous United States.”
Floating offshore wind farms are another area of active innovation. Unlike the fixed-foundation turbines mainly used offshore today, floating turbines could be installed in deep waters and allow for development on trickier coastlines like off of Oregon and Washington state. Though there are no floating offshore wind farms in the United States yet, there are an estimated 266 gigawatts of floating turbine capacity in the pipeline globally.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: In the Atlantic, the tropical storm that could, as it develops, take the name Jerry is making its way westward toward the U.S. • In the Pacific, Hurricane Priscilla strengthened into a Category 2 storm en route to Arizona and the Southwest • China broke an October temperature record with thermometers surging near 104 degrees Fahrenheit in the southeastern province of Fujian.
The Department of Energy appears poised to revoke awards to two major Direct Air Capture Hubs funded by the Infrastructure Investment and Jobs Act in Louisiana and Texas, Heatmap’s Emily Pontecorvo reported Tuesday. She got her hands on an internal agency project list that designated nearly $24 billion worth of grants as “terminated,” including Occidental Petroleum’s South Texas DAC Hub and Louisiana's Project Cypress, a joint venture between the DAC startups Heirloom and Climeworks. An Energy Department spokesperson told Emily that he was “unable to verify” the list of canceled grants and said that “no further determinations have been made at this time other than those previously announced,”referring to the canceled grants the department announced last week. Christoph Gebald, the CEO of Climeworks, acknowledged “market rumors” in an email, but said that the company is “prepared for all scenarios.” Heirloom’s head of policy, Vikrum Aiyer, said the company wasn’t aware of any decision the Energy Department had yet made.
While the list floated last week showed the Trump administration’s plans to cancel the two regional hydrogen hubs on the West Coast, the new list indicated that the Energy Department planned to rescind grants for all seven hubs, Emily reported. “If the program is dismantled, it could undermine the development of the domestic hydrogen industry,” Rachel Starr, the senior U.S. policy manager for hydrogen and transportation at Clean Air Task Force told her. “The U.S. will risk its leadership position on the global stage, both in terms of exporting a variety of transportation fuels that rely on hydrogen as a feedstock and in terms of technological development as other countries continue to fund and make progress on a variety of hydrogen production pathways and end uses.”
Remember the Tesla announcement I teased in yesterday’s newsletter? The predictions proved half right: The electric automaker did, indeed, release a cheaper version of its midsize SUV, the Model Y, with a starting price just $10 shy of $40,000. Rather than a new Roadster or potential vacuum cleaner, as the cryptic videos the company posted on CEO Elon Musk’s social media site hinted, the second announcement was a cheaper version of the Model 3, already the lower-end sedan offering. Starting at $36,990, InsideEVs called it “one of the most affordable cars Tesla has ever sold, and the cheapest in 2025.” But it’s still a far cry from Musk’s erstwhile promise to roll out a Tesla for less than $30,000.
That may be part of why the company is losing market share. As Heatmap’s Matthew Zeitlin reported, Tesla’s slice of the U.S. electric vehicle sales sank to its lowest-ever level in August despite Americans’ record scramble to use the federal tax credits before the September 30 deadline President Donald Trump’s new tax law set. General Motors, which sold more electric vehicles in the third quarter of this year than in all of 2024, offers the cheapest battery-powered passenger vehicle on the market today, the Chevrolet Equinox, which starts at $35,100.
Get Heatmap AM directly in your inbox every morning:
Trump’s pledge to revive the United States’ declining coal industry was always a gamble — even though, as Matthew reported in July, global coal demand is rising. Three separate stories published Tuesday show just how stacked the odds are against a major resurgence:
As you may recall from two consecutive newsletters last month, Secretary of Energy Chris Wright said “permitting reform” was “the biggest remaining thing” in the administration’s agenda. Yet Republican leaders in Congress expressed skepticism about tacking energy policy into the next reconciliation bill. This week, however, Utah Senator Mike Lee, the chairman of the Senate Committee on Energy and Natural Resources, called for a legislative overhaul of the National Environmental Policy Act. On Monday, the pro-development social media account Yimbyland — short for Yes In My Back Yard — posted on X: “Reminder that we built the Golden Gate Bridge in 4.5 years. Today, we wouldn’t even be able to finish the environmental review in 4.5 years.” In response, Lee said: “It’s time for NEPA reform. And permitting reform more broadly.”
Last month, a bipartisan permitting reform bill got a hearing in the House of Representatives. But that was before the government shutdown. And sources familiar with Democrats’ thinking have in recent months suggested to me that the administration’s gutting of so many clean energy policies has left Republicans with little to bargain with ahead of next year’s midterm elections.
Soon-to-be Japanese prime minister Sanae Takaichi.Yuichi Yamazaki - Pool/Getty Images
On Saturday, Japan’s long-ruling Liberal Democratic Party elected its former economic minister, Sanae Takaichi, as its new leader, putting her one step away from becoming the country’s first woman prime minister. Under previous administrations, Japan was already on track to restart the reactors idled after the 2011 Fukushima disaster. But Takaichi, a hardline conservative and nationalist who also vowed to re-militarize the nation, has pushed to speed up deployment of new reactors and technologies such as fusion in hopes of making the country 100% self-sufficient on energy.
“She wants energy security over climate ambition, nuclear over renewables, and national industry over global corporations,” Mika Ohbayashi, director at the pro-clean-energy Renewable Energy Institute, told Bloomberg. Shares of nuclear reactor operators surged by nearly 7% on Monday on the Tokyo Stock Exchange, while renewable energy developers’ stock prices dropped by as much as 15%
Researchers at the United Arab Emirates’ University of Sharjah just outlined a new method to transform spent coffee grounds and a commonly used type of plastic used in packaging into a form of activated carbon that can be used for chemical engineering, food processing, and water and air treatments. By repurposing the waste, it avoids carbon emitting from landfills into the atmosphere and reduces the need for new sources of carbon for industrial processes. “What begins with a Starbucks coffee cup and a discarded plastic water bottle can become a powerful tool in the fight against climate change through the production of activated carbon,” Dr. Haif Aljomard, lead inventor of the newly patented technology, said in a press release.
Last week’s Energy Department grant cancellations included funding for a backup energy system at Valley Children’s Hospital in Madera, California
When the Department of Energy canceled more than 321 grants in an act of apparent retribution against Democrats over the government shutdown, Russ Vought, President Trump’s budget czar, declared that the money represented “Green New Scam funding to fuel the Left's climate agenda.”
At least one of the grants zeroed out last week, however, was supposed to help keep the lights on at a children’s hospital.
The $29 million grant was intended to build a 3.3-megawatt long-duration energy storage system at Valley Children’s Hospital, a large pediatric hospital in Madera, California. The system would “power critical hospital operations during outage events,” such as when the California grid shuts down to avoid starting wildfires, according to project documents.
“The U.S. Department of Energy’s cancellation of funding for [the] long-duration energy storage demonstration grant is disappointing,” Zara Arboleda, a spokesperson for the hospital, told me.
Valley Children’s Hospital is a 358-bed hospital that says it serves more than 1.3 million children across California’s Central Valley. It has 116 neonatal intensive care unit beds and nationally ranked specialties in pediatric neurology, orthopedics, and lung surgery, among others.
Energy Secretary Chris Wright has characterized the more than $7.5 billion in grants canceled last week as part of an ongoing review of financial awards made by the Biden administration. But the timing of the cancellations — and Vought’s gleeful tweets about them — suggests a more vindictive purpose. Republican lawmakers and President Trump himself threatened to unleash Vought as a kind of rogue budget cutter before the federal government shut down last week.
“We don’t control what he’s going to do,” Senator John Thune told Politico last week. “I have a meeting today with Russ Vought, he of PROJECT 2025 Fame, to determine which of the many Democrat Agencies, most of which are a political SCAM, he recommends to be cut,” Trump posted on the same day.
Up until this year, canceling funding that is already under contract with a private party would have been thought to be straightforwardly illegal under federal law. But the Supreme Court’s conservative majority has allowed the Trump administration to act with previously unimaginable freedom while it considers ruling on similar cases.
Faraday Microgrids, the contractor that was due to receive the funding, is already building a microgrid for the hospital. The proposed backup power system — which the grant stipulated should be “non-lithium-ion” — was supposed to be funded by the Energy Department’s Office of Clean Energy Demonstrations, with the goal of finding new ways of storing electricity without using lithium-ion batteries, and was meant to work in concert with that new microgrid and snap on in times of high stress.
That microgrid project is still moving forward, Arboleda, the hospital’s spokesperson, told me. “Valley Children’s Hospital continues to build and soon will operate its microgrid announced in 2023 to ensure our facilities have access to reliable and sustainable energy every minute of every day for our patients and our care providers,” she added. That grid will contain some storage, but not the long-term storage system discussed in the official plan.
Faraday Microgrids, formerly known as Charge Bliss, didn’t respond to a request for comment, but its website touts its ability to secure grants and other government funding for energy projects.
In a statement, a spokesman for the Energy Department said that the grant was canceled because the project wasn’t feasible. “Following an in-depth review of the financial award, it was determined, among other reasons, that the viability of the project was not adequate to warrant further disbursements,” Ben Dietderich, a spokesman for the Energy Department, told me.
The children’s hospital, at least, is in good company. On Tuesday, a Trump administration document obtained by Heatmap News suggested the Energy Department is moving to kill bipartisan-backed funding for two direct air capture hubs in Texas and Louisiana. And although California has lost the most grants of any state, the Energy Department has also sought to terminate funding for new factories and industrial facilities across Republican-governed states.
Editor’s note: This story initially misstated the number of neonatal intensive care unit beds at Valley Children’s Hospital. It has been corrected.
Rob and Jesse break down China’s electricity generation with UC San Diego’s Michael Davidson.
China announced a new climate commitment under the Paris Agreement at last month’s United Nations General Assembly meeting, pledging to cut its emissions by 7% to 10% by 2035. Many observers were disappointed by the promise, which may not go far enough to forestall 2 degrees Celsius of warming. But the pledge’s conservatism reveals the delicate and shifting politics of China’s grid — and how the country’s central government and its provinces fight over keeping the lights on.
On this week’s episode of Shift Key, Rob and Jesse talk to Michael Davidson, an expert on Chinese electricity and climate policy. He is a professor at the University of California, San Diego, where he holds a joint faculty appointment at the School of Global Policy and Strategy and the Jacobs School of Engineering. He is also a senior associate at the Center for Strategic and International Studies, and he was previously the U.S.-China policy coordinator for the Natural Resources Defense Council.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: Your research and other people’s research has revealed that basically, when China started making capacity payments to coal plants, in some cases, it didn’t have the effect on the bottom line of these plants that was hoped for, and also we didn’t really see coal generation go down or change in the year that it happened. It wasn’t like they were paying these plants to stick around and not run. They were basically paying these plants, it seems like, to do the exact same thing they did the year before, but now they also got paid. And maybe that was needed for their economics, we can talk about it.
Why did coal get those payments and not, say, batteries or other sources of spare capacity, like pumped hydro storage, like nuclear? Why did coal, specifically, get payments for capacity? And does it have to do with spinning reserve? Or does it have to do with the political economy of coal in China?
Michael Davidson: When it came out, we said exactly the same thing. We said, okay, this should be a technology neutral payment scheme, and it should be a market, not a payment, right? But China’s building these things up little by little. Over time we’ve seen, historically, actually, a number of systems internationally started with payments before they move to markets because they realize that you could get a lot more competitive pressure with markets.
The capacity payment scheme for coal is extremely simple, right? It says, okay, for each province, we’re going to say what percentage of our benchmark coal investment costs are we going to subsidize. It’s extremely simple. It does not account for how much you’re using it at a plant by plant level. It does not account for other factors, renewables, etc. It’s a very coarse metric. But I wouldn’t say that it had had some, you know, perverse negative effect on the outcome of what coal generation is. Probably more likely is that these payments were seen, for some, as extra support. But then for some that are really hurting, they’re saying, okay, well then we will maybe put up less obstacles to market reforms.
But then on top of that, you have to put in the hourly energy demand growth story and say, okay, well you have all these renewables, but you don’t have enough storage to shift to evening peaks. You are going to rely on coal to meet that given the current rigid dispatch system. And so you’re dispatching them kind of regardless of whether or not you have the payment schemes.
I will say that I was a skeptic, right? Because when people told me that China should put in place a capacity market, I said, China has overcapacity. So if you have an overcapacity situation, you put in place a market, the prices should be zero. So what’s the point? But actually, when you’re looking out ahead with all of this surplus coal capacity that you’re trying to push down, you’re trying to push those capacity factors of those coal plans from 50%, 60%, down to 20% or even lower, they need to have other revenue schemes if you’re not going to dramatically open up your spot markets, which China is very hesitant to do — very risk averse when it comes to the openness of spot markets, in terms of price gaps. So that’s a necessary part of this transition. But it can be done more efficiently, and it should done technology neutral.
And by the way that is happening in certain places. That’s a national scheme, but we actually see that the implementation — for example, Shaanxi province, we have a technology neutral scheme that would include other resources, not just coal.
Mentioned:
China’s new pledge to cut its emissions by 2035
What an ‘ambitious’ 2035 electricity target looks like for China
China’s Clean Energy Pledge is Clouded by Coal, The Wire China
Jesse’s upshift; Rob’s upshift.
This episode of Shift Key is sponsored by …
Hydrostor is building the future of energy with Advanced Compressed Air Energy Storage. Delivering clean, reliable power with 500-megawatt facilities sited on 100 acres, Hydrostor’s energy storage projects are transforming the grid and creating thousands of American jobs. Learn more at hydrostor.ca.
A warmer world is here. Now what? Listen to Shocked, from the University of Chicago’s Institute for Climate and Sustainable Growth, and hear journalist Amy Harder and economist Michael Greenstone share new ways of thinking about climate change and cutting-edge solutions. Find it here.
Music for Shift Key is by Adam Kromelow.