You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The country’s largest source of renewable energy has a long history.

Was Don Quixote a NIMBY?
Miguel de Cervantes’ hero admittedly wasn’t tilting at turbines in 1605, but for some of his contemporary readers in 17th-century Spain, windmills for grinding wheat into flour were viewed as a “dangerous new technology,” author Simon Winchester writes in his forthcoming book, The Breath of the Gods: The History and Future of the Wind. One interpretation of Cervantes’ novel might be that Quixote was “actually doing battle with progress.”
Nearly four and a half centuries later, harnessing the energy of the wind remains controversial, even if the breeze is one of humankind’s longest-utilized resources. While wind is the largest source of renewable electricity generation in the United States today, high construction costs and local opposition have more recently stymied the industry’s continued expansion. The new presidential administration — suspicious of wind’s reliability and place in the American energy mix — has also been doing its very best to stunt any future growth in the sector.
Whether you’re catching up on Trump’s latest regulatory moves, you have your own concerns about the safety of the technology, or this is your first time even thinking about this energy resource, here is the blow-by-blow — sorry! — on wind power in the U.S.
At their most basic conceptual level, wind turbines work by converting kinetic energy — the energy of an object in motion; in this case, air particles — into electrical energy that can be used to power homes, buildings, factories, and data centers.
Like hydroelectric dams, turbines do this by first converting kinetic energy into mechanical energy. The wind turns the turbine blades, which spin a rotor that is connected to a generator. Inside the generator are magnets that rotate around coils of copper wire, creating a magnetic field that pushes and pulls the electrons within the copper. Voilà — and with gratitude to Michael Faraday — now you have an electrical current that can be distributed to the grid.
Turbines typically require an average wind speed of about 9 miles per hour to generate electricity, which is why they are constructed in deserts, mountain passes, on top of hills, or in shallow coastal waters offshore, where there is less in the way to obstruct the flow of wind. Higher elevations are also windier, so utility-scale wind turbines are frequently around 330 feet tall (though the largest turbines tower 600 feet or higher).
It depends on the size of the turbine and also the wind speed. The average capacity of a new land-based wind turbine in the U.S. was 3.4 megawatts in 2023 — but that’s the “nameplate capacity,” or what the turbine would generate if it ran at optimal capacity around the clock.

In the U.S., the average capacity factor (i.e. the actual energy output) for a turbine is more like 42%, or close to two-fifths of its theoretical maximum output. The general rule of thumb is that one commercial turbine in the U.S. can power nearly 1,000 homes per month. In 2023, the latest year of data available, land-based and offshore wind turbines in the U.S. generated 425,235 gigawatt-hours of electricity, or enough to power 39 million American homes per year.
A common criticism of wind power is that it “stops working” if the wind isn’t blowing. While it’s true that wind is an intermittent resource, grid operators are used to coping with this. A renewables-heavy grid should combine different energy sources and utilize offline backup generators to prevent service interruptions during doldrums. Battery storage can also help handle fluctuations in demand and increase reliability.
At the same time, wind power is indeed dependent on, well, the wind. In 2023, for example, U.S. wind power generation dropped below 2022 levels due to lower-than-average wind speeds in parts of the Midwest. When you see a turbine that isn’t spinning, though, it isn’t necessarily because there isn’t enough wind. Turbines also have a “cut out” point at which they stop turning if it gets too windy, which protects the structural integrity of the blades and prevents Twisters-like mishaps, as well as keeps the rotor from over-spinning, which could strain or break the turbine’s internal rotating components used to generate electricity.
Though Americans have used wind power in various forms since the late 1800s, the oil crisis of the 1970s brought new interest, development, and investment in wind energy. “The American industry really got going after the suggestion from the Finns, the Swedes, the Danes,” who’d already been making advances in the technology, albeit on single-turbine scales, Winchester, the author of the forthcoming history of wind power, The Breath of the Gods, told me.
In the early 1970s, the Department of Energy issued a grant to William Heronemus, a professor at the University of Massachusetts, Amherst, to explore the potential of wind energy. Heronemus became “really enthusiastic and built wind generators on the campus,” helping to modernize turbines into the more familiar construction we see widely today, Winchester said.
Some of Heronemus’ former students helped build the world’s first multi-turbine wind farm in New Hampshire in 1981. Though the blades of that farm interfered with nearby television reception — they had to be paused during prime time — the technology “seemed to everyone to make sense,” Winchester said. The Energy Policy Act of 1992, which introduced production tax credits for renewables, spurred further development through the end of the millennium.
Heronemus, a former Naval architect, had dreamed in the 1970s of building a flotilla of floating turbines mounted on “wind ships” that were powered by converting seawater into hydrogen fuel. Early experiments in offshore wind by the Energy Research and Development Administration, the progenitor of the Department of Energy, weren’t promising due to the technological limitations of the era — even commercial onshore wind was still in its infancy, and Heronemus’ plans looked like science-fiction.
In 1991, though, the Danes — ever the leaders in wind energy — successfully constructed the Vindeby Offshore Wind Farm, complete with 11 turbines and a total installed capacity of 5 megawatts. The Blyth offshore wind farm in northern Wales soon followed, with the United States finally constructing its first grid-connected offshore wind turbines off of Maine in 2013. The Block Island wind farm, with a capacity of 30 megawatts, is frequently cited as the first true offshore wind farm in the U.S., and began operating off the coast of Rhode Island in 2016.
Though offshore wind taps into higher and more consistent wind speeds off the ocean — and, as a result, is generally considered more efficient than onshore wind — building turbines at sea comes with its own set of challenges. Due to increased installation costs and the greater wear-and-tear of enduring saltwater and storms at sea, offshore wind is generally calculated to be about twice as expensive as onshore wind. “It’s unclear if offshore wind will ever be as cheap as onshore — even the most optimistic projections documented by the National Renewable Energy Laboratory have offshore wind more expensive than the current price of onshore in 2035,” according to Brian Potter in his newsletter, Construction Physics, though he notes that “past projections have underestimated the future cost reductions of wind turbines.”

In the decade from 2014 to 2023, total wind capacity in the U.S. doubled. Onshore and offshore wind power is now responsible for over 10% of utility-scale electricity generation in the U.S., and has been the highest-producing renewable energy source in the nation since 2019. (Hydropower, the next highest-producing renewable energy source, is responsible for about 5.7% of the energy mix, by comparison.) In six states — Iowa, Kansas, Oklahoma, New Mexico, South Dakota, and North Dakota — onshore wind makes up more than a third of the current electricity mix, Climate Central reports.
Offshore wind has been slower to grow in the U.S. Even during the Biden administration, when the government targeted developing 30 gigawatts of offshore wind capacity by 2030, the industry faced financing challenges, transmission and integration obstacles, and limits in access to a skilled workforce, per a 2024 paper in Energy Research & Social Science. That same year, the Department of Energy reported that the nation had a total of 80,523 megawatts for offshore wind in operation and in the pipeline, which, under ideal conditions, could power 26 million homes. Many of those offshore projects and plans now face an uncertain future under the Trump administration.
Though we’re far removed from the 1880s, when suspicious Scots dismissed wind energy pioneer James Blyth’s home turbine as “the devil’s work,” there are still plenty of persistent concerns about the safety of wind power to people and animals.
Some worry about onshore wind turbines’ effects on people, including the perceived dangers of electromagnetic fields, shadow flicker from the turning blades, and sleep disturbance or stress. Per a 2014 systematic review of 60 peer-reviewed studies on wind turbines and human health by the National Institutes of Health, while there was “evidence to suggest that wind turbines can be a source of annoyance to some people, there was no evidence demonstrating a direct causal link between living in proximity to wind turbines and more serious physiological health effects.” The topic has since been extensively studied, with no reputable research concluding that turbines have poor health impacts on those who live near them.
Last year, the blade of a turbine at Vineyard Wind 1 broke and fell into the water, causing the temporary closure of beaches in Nantucket to protect people from the fiberglass debris. While no one was ultimately injured, GE Vernova, which owns Vineyard Wind, agreed earlier this year to settle with the town for $10.5 million to compensate for the tourism and business losses that resulted from the failure. Thankfully, as my colleague Jael Holzman has written, “major errors like blade failures are incredibly rare.”
There are also concerns about the dangers of wind turbines to some wildlife. Turbines do kill birds, including endangered golden eagles, which has led to opposition from environmental and local activist groups. But context is also important: The U.S. Fish & Wildlife Service has found that wind farms “represent just 0.03% of all human-related bird deaths in the U.S.” (Illegal shootings, for example, are the greatest cause of golden eagle deaths.) The continued use of fossil fuels and the ecological impacts of climate change also pose a far graver threat to birds than wind farms do. Still, there is room for discussion and improvement: The California Department of Fish and Wildlife issued a call earlier this year for proposals to help protect golden eagles from turbine collisions in its major wind resource areas.
Perhaps the strongest objection to offshore wind has come from concern for whales. Though there has been an ongoing “unusual mortality event” for whales off the East Coast dating back to 2016 — about the same time the burgeoning offshore wind industry took off in the United States — the two have been falsely correlated (especially by groups with ties to the fossil fuel industry). A recent government impact report ordered by Republicans even found that “NOAA Fisheries does not anticipate any death or serious injury to whales from offshore wind-related actions and has not recorded marine mammal deaths from offshore wind activities.” Still, that hasn’t stopped Republican leaders — including the president — from claiming offshore wind is making whales “a little batty.”
Polling by Heatmap has found that potential harm to wildlife is a top concern of both Democrats and Republicans when it comes to the deployment of renewable energy. Although there has been “no evidence to date that the offshore wind build-out off the Atlantic coast has harmed a single whale … studies have shown that activities related to offshore wind could harm a whale, which appears to be enough to override the benefits for some people,” my colleague Jael has explained. A number of environmental groups are attempting to prevent offshore and land-based wind development on conservationist grounds, to varying degrees of success. Despite these reservations, though, our polling has found that Americans on the coast largely support offshore wind development.
Aesthetic concerns are another reason wind faces opposition. The proposed Lava Ridge wind farm in Idaho, which was Heatmap’s most imperiled renewable energy project last year, faced intense opposition, ostensibly due to the visibility of the turbines from the Minidoka National Historic Site, the site of a Japanese internment camp. Coastal homeowners have raised the same complaint about offshore wind that would be visible from the beach, like the Skipjack offshore wind project, which would be situated off the coast of Maryland.
Not good. As one of President Trump’s first acts in office, he issued an executive order that the government “shall not issue new or renewed approvals, rights of way, permits, leases, or loans for onshore or offshore wind projects” until the completion of a “comprehensive assessment” of the industry’s impacts on the economy and the environment. Eight months later, federal agencies were still not processing applications for onshore wind projects.
Offshore wind is in even more trouble because such projects are sited entirely in federal waters. As of late July, the Bureau of Ocean Energy Management had rescinded all designated wind energy areas — a decision that applies to some 3.5 million acres of federal waters, including the Central Atlantic, California, and Oregon. The Department of the Interior has also made moves to end what it calls the “special treatment for unreliable energy sources, such as wind,” including by “evaluating whether to stop onshore wind development on some federal lands and halting future offshore wind lease sales.” The Interior Department will also look into how “constructing and operating wind turbines might affect migratory bird populations.”
The One Big Beautiful Bill Act, meanwhile, put strict restrictions on tax credits available to wind developers. Per Cleanview, the bill jeopardizes some 114 gigawatts of wind energy projects, while the Center for American Progress writes that “more than 17,000 jobs are connected to offshore wind power projects that are already canceled, on hold, or at risk from the Trump administration’s attacks on wind power.”
The year 2024 marked a record for new wind power capacity, with 117 gigawatts of wind energy installed globally. China in particular has taken a keen interest in constructing new wind farms, installing 26 gigawatts worth, or about 5,300 turbines, between January and May of last year alone.
Still, there are significant obstacles to the buildout of wind energy even outside of the United States, including competition from solar, which is now the cheapest and most widely deployed renewable energy resource in the world. High initial construction costs, deepened by inflation and supply-chain issues, have also stymied wind development.
There are an estimated 424 terawatts worth of wind energy available on the planet, and current wind turbines tap into just half a percent of that. According to Columbia Business School’s accounting, if maximized, wind has the potential to “abate 10% to 20% of CO2 emissions by 2050, through the clean electrification of power, heat, and road transport.”
Wind is also a heavy player in the Net Zero Emissions by 2050 Scenario, which aims for
7,100 terawatt hours of wind electricity generation worldwide by the end of the decade, per the International Energy Agency. But current annual growth would need to increase annual capacity additions from about 115 gigawatts in 2023 to 340 gigawatts in 2030. “Far greater policy and private-sector efforts are needed to achieve this level of capacity growth,” IEA notes, “with the most important areas for improvement being facilitating permitting for onshore wind and cost reductions for offshore wind.”
Wind turbines continue to become more efficient and more economical. Many of the advances have come in the form of bigger turbines, with the average height of a hub for a land-based turbine increasing 83% since the late 1990s. The world’s most powerful offshore turbine, Vestas’ V236-15.0 megawatt prototype, is, not coincidentally, also the world’s tallest, at 919 feet.
Advanced manufacturing techniques, such as the use of carbon fiber composites in rotor blades and 3D printed materials, could also lead to increases in efficiency. In a 2024 report, NREL anticipated that such innovations could potentially “unlock 80% more economically viable wind energy capacity within the contiguous United States.”
Floating offshore wind farms are another area of active innovation. Unlike the fixed-foundation turbines mainly used offshore today, floating turbines could be installed in deep waters and allow for development on trickier coastlines like off of Oregon and Washington state. Though there are no floating offshore wind farms in the United States yet, there are an estimated 266 gigawatts of floating turbine capacity in the pipeline globally.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Adorable as they are, Japanese kei cars don’t really fit into American driving culture.
It’s easy to feel jaded about America’s car culture when you travel abroad. Visit other countries and you’re likely to see a variety of cool, quirky, and affordable vehicles that aren’t sold in the United States, where bloated and expensive trucks and SUVs dominate.
Even President Trump is not immune from this feeling. He recently visited Japan and, like a study abroad student having a globalist epiphany, seems to have become obsessed with the country’s “kei” cars, the itty-bitty city autos that fill up the congested streets of Tokyo and other urban centers. Upon returning to America, Trump blasted out a social media message that led with, “I have just approved TINY CARS to be built in America,” and continued, “START BUILDING THEM NOW!!!”
He’s right: Kei cars are neat. These pint-sized coupes, hatchbacks, and even micro-vans and trucks are so cute and weird that U.S. car collectors have taken to snatching them up (under the rules that allow 25-year-old cars to be imported to America regardless of whether they meet our standards). And he’s absolutely right that Americans need smaller and more affordable automotive options. Yet it’s far from clear that what works in Japan will work here — or that the auto execs who stood behind Trump last week as he announced a major downgrading of upcoming fuel economy standards are keen to change course and start selling super-cheap economy cars.
Americans want our cars to do everything. This country’s fleet of Honda CR-Vs and Chevy Silverados have plenty of space for school carpools and grocery runs around town, and they’re powerful and safe enough for road-tripping hundreds of miles down the highway. It’s a theme that’s come up repeatedly in our coverage of electric vehicles. EVs are better for cities and suburbs than internal combustion vehicles, full stop. But they may never match the lightning-fast road trip pit stop people have come to expect from their gasoline-powered vehicles, which means they don’t fit cleanly into many Americans’ built-in idea of what a car should be.
This has long been a problem for selling Americans on microcars. We’ve had them before: As recently as a dozen years ago, extra-small autos like the Smart ForTwo and Scion iQ were available here. Those tiny cars made tons of sense in the United States’ truly dense urban areas; I’ve seen them strategically parked in the spaces between homes in San Francisco that are too short for any other car. They made less sense in the more wide-open spaces and sprawling suburbs that make up this country. The majority of Americans who don’t struggle with street parking and saw that they could get much bigger cars for not that much more money weren’t that interested in owning a car that’s only good for local driving.
The same dynamic exists with the idea of bringing kei cars for America. They’re not made to go faster than 40 or 45 miles per hour, and their diminutive size leaves little room for the kind of safety features needed to make them highway-legal here. (Can you imagine driving that tiny car down a freeway filled with 18-wheelers?) Even reaching street legal status is a struggle. While reporting earlier this year on the rise of kei car enthusiasts, The New York Times noted that while some states have moved to legalize mini-cars, it is effectively illegal to register them in New York. (They interviewed someone whose service was to register the cars in Montana for customers who lived elsewhere.)
If the automakers did follow Trump’s directive and stage a tiny car revival, it would be a welcome change for budget-focused Americans. Just a handful of new cars can be had for less than $25,000 in the U.S. today, and drivers are finally beginning to turn against the exorbitant prices of new vehicles and the endless car loans required to finance them. Individuals and communities have turned increasingly to affordable local transportation options like golf carts and e-bikes for simply getting around. Tiny cars could occupy a space between those vehicles and the full-size car market. Kei trucks, which take the pickup back to its utilitarian roots, would be a wonderful option for small businesses that just need bare-bones hauling capacity.
Besides convincing size-obsessed Americans that small is cool, there is a second problem with bringing kei cars to the U.S., which is figuring out how to make little vehicles fit into the American car world. Following Trump’s declaration that America should get Tokyo-style tiny cars ASAP, Transportation Secretary Sean Duffy said “we have cleared the deck” of regulations that would prevent Toyota or anyone else from selling tiny cars here. Yet shortly thereafter, the Department of Transportation clarified that, “As with all vehicles, manufacturers must certify that they meet U.S. Federal Motor Vehicle Safety Standards, including for crashworthiness and passenger protection.”
In other words, Ford and GM can’t just start cranking out microcars that don’t include all the airbags and other protections necessary to meet American crash test and rollover standards (not without a wholesale change to our laws, anyway). As a result, U.S. tiny cars couldn’t be as tiny as Japanese ones. Nor would they be as cheap, which is a crucial issue. Americans might spend $10,000 on a city-only car, but probably wouldn’t spend $20,000 — not when they could just get a plain old Toyota Corolla or a used SUV for that much.
It won’t be easy to convince the car companies to go down this road, either. They moved so aggressively toward crossovers and trucks over the past few decades because Americans would pay a premium for those vehicles, making them far more profitable than economy cars. The margins on each kei car would be much smaller, and since the stateside market for them might be relatively small, this isn’t an alluring business proposition for the automakers. It would be one thing if they could just bring the small cars they’re selling elsewhere and market them in the United States without spending huge sums to redesign them for America. But under current laws, they can’t.
Not to mention the whiplash effect: The Trump administration’s attacks on EVs left the carmakers struggling to rearrange their plans. Ford and Chevy probably aren’t keen to start the years-long process of designing tiny cars to please a president who’ll soon be distracted by something else.
Trump’s Tokyo fantasy is based in a certain reality: Our cars are too big and too expensive. But while kei cars would be fantastic for driving around Boston, D.C., or San Francisco, the rides that America really needs are the reasonably sized vehicles we used to have — the hatchbacks, small trucks, and other vehicles that used to be common on our roads before the Ford F-150 and Toyota RAV4 ate the American car market. A kei truck might be too minimalist for mainstream U.S. drivers, but how about a hybrid revival of the El Camino, or a truck like the upcoming Slate EV whose dimensions reflect what a compact truck used to be? Now that I could see.
Current conditions: In the Pacific Northwest, parts of the Olympics and Cascades are set for two feet of rain over the next two weeks • Australian firefighters are battling blazes in Victoria, New South Wales, and Tasmania • Temperatures plunged below freezing in New York City.
The U.S. military is taking on a new role in the Trump administration’s investment strategy, with the Pentagon setting off a wave of quasi-nationalization deals that have seen the Department of Defense taking equity stakes in critical mineral projects. Now the military’s in-house lender, the Office of Strategic Capital, is making nuclear power a “strategic technology.” That’s according to the latest draft, published Sunday, of the National Defense Authorization Act making its way through Congress. The bill also gives the lender new authorities to charge and collect fees, hire specialized help, and insulate its loan agreements from legal challenges. The newly beefed up office could give the Trump administration a new tool for adding to its growing list of investments, as I previously wrote here.

The “Make America Healthy Again” wing of President Donald Trump’s political coalition is urging the White House to fire Environmental Protection Agency Administrator Lee Zeldin over his decisions to deregulate harmful chemicals. In a petition circulated online, several prominent activists aligned with the administration’s health secretary, Robert F. Kennedy, Jr., accused Zeldin of having “prioritized the interests of chemical corporations over the well-being of American families and children.” As of early Friday afternoon, The New York Times reported, more than 2,800 people had signed the petition. By Sunday afternoon, the figure was nearly 6,000. The organizers behind the petition include Vani Hari, a MAHA influencer known as the Food Babe to her 2.3 million Instagram followers, and Alex Clark, a Turning Point USA activist who hosts what the Times called “a health and wellness podcast popular among conservatives.”
The intraparty conflict comes as one of Zeldin’s more controversial rollbacks of a Biden-era pollution rule, a regulation that curbs public exposure to soot, is facing significant legal challenges. A lawyer told E&E News the EPA’s case is a “Hail Mary pass.”
The Democratic Republic of the Congo, by far the world’s largest source of cobalt, has slapped new export restrictions on the bluish metal needed for batteries and other modern electronics. As much as 80% of the global supply of cobalt comes from the DRC, where mines are notorious for poor working conditions, including slavery and child labor. Under new rules for cobalt exporters spelled out in a government document Reuters obtained, miners would need to pre-pay a 10% royalty within 48 hours of receiving an invoice and secure a compliance certificate. The rules come a month after Kinshasa ended a months-long export ban by implementing a quota system aimed at boosting state revenues and tightening oversight over the nation’s fast-growing mining industry. The establishment of the rules could signal increased exports again, but also suggests that business conditions are changing in the country in ways that could further complicate mining.
With Chinese companies controlling the vast majority of the DRC’s cobalt mines, the U.S. is looking to onshore more of the supply chain for the critical mineral. Among the federal investments is one I profiled for Heatmap: an Ohio startup promising to refine cobalt and other metals with a novel processing method. That company, Xerion, received funding from the Defense Logistics Agency, yet another funding office housed under the U.S. military.
Sign up to receive Heatmap AM in your inbox every morning:
Last month, I told you about China’s outreach to the rest of the world, including Western European countries, to work together on nuclear fusion. The U.S. cut off cooperation with China on traditional atomic energy back in 2017. But France is taking a different approach. During a state visit to Beijing last week, French President Emmanuel Macron “failed to win concessions” from Chinese leader Xi Jinping, France24 noted. But Paris and Beijing agreed to a new “pragmatic cooperation” deal on nuclear power. France’s state-owned utility giant EDF already built a pair of its leading reactors in China.
The U.S. has steadily pushed the French out of deals within the democratic world. Washington famously muscled in on a submarine deal, persuading Australia to drop its deal with France and go instead with American nuclear vessels. Around the same time, Poland — by far the biggest country in Europe to attempt to build its first nuclear power plant — gave the American nuclear company Westinghouse the contract in a loss for France’s EDF. Working with China, which is building more reactors at a faster rate than any other country, could give France a leg up over the U.S. in the race to design and deploy new reactors.
It’s not just the U.S. backpedaling on climate pledges and extending operations of coal plants set to shut down. In smog-choked Indonesia, which ranks seventh in the world for emissions, a coal-fired plant that Bloomberg described as a “flagship” for the country’s phaseout of coal has, rather than shut down early, applied to stay open longer.
Nor is the problem reserved to countries with right-wing governance. The new energy plan Canadian Prime Minister Mark Carney, a liberal, is pursuing in a bid to leverage the country’s fossil fuel riches over an increasingly pushy Trump means there’s “no way” Ottawa can meet its climate goals. As I wrote last week, the Carney government is considering a new pipeline from Alberta to the West Coast to increase oil and gas sales to Asia.
There’s a new sheriff in town in the state at the center of the data center boom. Virginia’s lieutenant governor-elect Ghazala Hasmi said Thursday that the incoming administration would work to shift policy toward having data centers “pay their fair share” by supplying their own energy and paying to put more clean power on the grid, Utility Dive reported. “We have the tools today. We’ve got the skilled and talented workforce. We have a policy roadmap as well, and what we need now is the political will,” Hashmi said. “There is new energy in this legislature, and with it a real opportunity to build new energy right here in the Commonwealth.”
Get up to speed on the SPEED Act.
After many months of will-they-won’t-they, it seems that the dream (or nightmare, to some) of getting a permitting reform bill through Congress is squarely back on the table.
“Permitting reform” has become a catch-all term for various ways of taking a machete to the thicket of bureaucracy bogging down infrastructure projects. Comprehensive permitting reform has been tried before but never quite succeeded. Now, a bipartisan group of lawmakers in the House are taking another stab at it with the SPEED Act, which passed the House Natural Resources Committee the week before Thanksgiving. The bill attempts to untangle just one portion of the permitting process — the National Environmental Policy Act, or NEPA.
There are a lot of other ways regulation and bureaucracy get in the way of innovation and clean energy development that are not related to NEPA. Some aren’t even related to permitting. The biggest barrier to building transmission lines to carry new carbon-free energy, for example, is the lack of a standard process to determine who should pay for them when they cross through multiple utility or state jurisdictions. Lawmakers on both sides of the aisle are working on additional bills to address other kinds of bottlenecks, and the SPEED Act could end up being just one piece of the pie by the time it’s brought to the floor.
But while the bill is narrow in scope, it would be sweeping in effect — and it’s highly unclear at this point whether it could garner the bipartisan support necessary to get 60 votes in the Senate. Just two of the 20 Democrats on the Natural Resources Committee voted in favor of the bill.
Still, the context for the debate has evolved significantly from a year ago, as artificial intelligence has come to dominate America’s economic prospects, raising at least some proponents’ hopes that Congress can reach a deal this time.
“We’ve got this bipartisan interest in America winning the AI race, and an understanding that to win the AI race, we’ve got to expand our power resources and our transmission network,” Jeff Dennis, the executive director of the Electricity Customer Alliance and a former official at the Department of Energy’s Grid Deployment Office, told me. “That creates, I think, a new and a different kind of energy around this conversation than we’ve had in years past.”
One thing that hasn’t changed is that the permitting reform conversation is almost impenetrably difficult to follow. Here’s a guide to the SPEED Act to help you navigate the debate as it moves through Congress.
NEPA says that before federal agencies make decisions, whether promulgating rules or approving permits, they must assess the environmental impacts of those decisions and disclose them to the public. Crucially, it does not mandate any particular action based on the outcome of these assessments — that is, agencies still have full discretion over whether to approve a permit, regardless of how risky the project is shown to be.
The perceived problem is that NEPA slows down infrastructure projects of all kinds — clean energy, dirty energy, housing, transit — beyond what should reasonably be expected, and thereby raises costs. The environmental assessments themselves take a long time, and yet third parties still often sue the federal government for not doing a thorough enough job, which can delay project development for many more years.
There’s a fair amount of disagreement over whether and how NEPA is slowing down clean energy, specifically. Some environmental and clean energy researchers have analyzed NEPA timelines for wind, solar, and transmission projects and concluded that while environmental reviews and litigation do run up the clock, that has been more the exception than the rule. Other groups have looked at the same data and seen a dire need for reform.
Part of the disconnect is about what the data doesn’t show. “What you don’t see is how little activity there is in transmission development because of the fear of not getting permits,” Michael Skelly, the CEO of Grid United, told me. “It’s so difficult to go through NEPA, it’s so costly on the front end and it’s so risky on the back end, that most people don’t even try.”
Underlying the dispute is also the fact that available data on NEPA processes and outcomes are scattered and incomplete. The Natural Resources Committee advanced two smaller complementary bills to the SPEED Act that would shine more light on NEPA’s flaws. One, called the ePermit Act, would create a centralized portal for NEPA-related documentation and data. The other directs the federal government to put out an annual report on how NEPA affects project timelines, costs, and outcomes.
During Biden’s presidency, Congress and the administration took a number of steps to reform NEPA — some more enduring than others. The biggest swing was the Fiscal Responsibility Act of 2023, which raised the debt ceiling. In an effort to prevent redundant analyses when a project requires approvals or input from multiple agencies, it established new rules by which one lead agency would oversee the NEPA process for a given project, set the environmental review schedule, and coordinate with other relevant agencies. It also codified new deadlines for environmental review — one year to complete environmental assessments, and two years for meatier "environmental impact statements” — and set page limits for these documents.
The 2021 bipartisan infrastructure law also established a new permitting council to streamline reviews for the largest projects.
The Inflation Reduction Act allocated more than $750 million for NEPA implementation across the federal government so that agencies would have more resources to conduct reviews. Biden’s Council of Environmental Quality also issued new regulations outlining how agencies should comply with NEPA, but those were vacated by a court decision that held that CEQ does not have authority to issue NEPA regulations.
Trump’s One Big Beautiful Bill Act, which he signed in early July, created a new process under NEPA by which developers could pay a fee to the government to guarantee a faster environmental review process.
None of these laws directly affected NEPA litigation, which many proponents of reform say is the biggest cause of delay and uncertainty in the process.
The most positive comments I heard about the SPEED Act from clean energy proponents were that it was a promising, though flawed, opening salvo for permitting reform.
Dennis told me it was “incredibly important” that the bill had bipartisan support and that it clarified the boundaries for what agencies should consider in environmental reviews. Marc Levitt, the director of regulatory reform at the Breakthrough Institute and a former Environmental Protection Agency staffer, said it addresses many of the right problems — especially the issue of litigation — although the provisions as written are “a bit too extreme.” (More on that in a minute.)
Skelly liked the 150-day statute of limitations on challenging agency decisions in court. In general, speeding up the NEPA process is crucial, he said, not just because time is money. When it takes five years to get a project permitted, “by the time you come out the other side, the world has changed and you might want to change your project,” but going through it all over again is too arduous to be worth it.
Industry associations for both oil and gas and clean energy have applauded the bill, with the American Clean Power Association joining the American Petroleum Institute and other groups in signing a letter urging lawmakers to pass it. The American Council on Renewable Energy also applauded the bill’s passage, but advised that funding and staffing permitting agencies was also crucial.
Many environmental groups fundamentally oppose the bill — both the provisions in it, and the overall premise that NEPA requires reform. “If you look at what’s causing delay at large,” Stephen Schima, senior legislative council for Earthjustice Action, told me, “it’s things like changes in project design, local and state regulations, failures of applicants to provide necessary information, lack of funding, lack of staff and resources at the agencies. It’s not the law itself.”
Schima and Levitt both told me that the language in the bill that’s supposed to prevent Trump from revoking previously approved permits is toothless — all of the exceptions listed “mirror almost precisely the conditions under which Trump and his administration are currently taking away permits,” Levitt said. The Solar Energy Industry Association criticized the bill for not addressing the “core problem” of the Trump administration’s “ongoing permitting moratorium” on clean energy projects.
Perhaps the biggest problem people have with the bill, which came up in my interviews and during a separate roundtable hosted by the Bipartisan Policy Center, is the way it prevents courts from stopping projects. An agency could do a slapdash environmental review, miss significant risks to the public, and there would be no remedy other than that the agency has to update its review — the project could move forward as-is.
Those are far from the only red flags. During a Heatmap event on Thursday, Ted Kelly, the director and lead counsel for U.S. energy at the Environmental Defense Fund, told me one of his biggest concerns was the part about ignoring new scientific research. “That just really is insisting the government shut its eyes to new information,” he said. Schima pointed to the injustice of limiting lawsuits to individuals who submitted public comments, when under the Trump administration, agencies have stopped taking public comments on environmental reviews. The language around considering effects that are “separate in time or place from the project or action” is also dangerous, Levitt said. It limits an agency’s discretion over what effects are relevant to consider, including cumulative effects like pollution and noise from neighboring projects.
The SPEED Act is expected to come to a vote on the House floor in the next few weeks. Then the Senate will likely put forward its own version.
As my colleague Jael Holzman wrote last month, Trump himself remains the biggest wildcard in permitting reform. Democrats have said they won’t agree to a deal that doesn’t bar the president from pulling previously-approved permits or otherwise level the playing field for renewable energy. Whether Trump would ever sign a bill with that kind of language is not a question we have much insight into yet.