You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Plus how it’s different from carbon capture — and, while we’re at it, carbon offsets.

At the heart of the climate crisis lies a harsh physical reality: Once carbon dioxide enters the atmosphere, it can stay there for hundreds or even thousands of years. Although some carbon does cycle in and out of the air via plants, soils, and the ocean, we are emitting far more than these systems can handle, meaning that most of it is just piling up. Burning fossil fuels is like continuously stuffing feathers into a duvet blanketing the Earth.
But there may be ways to begin plucking them out. That’s the promise of carbon removal, a category of technologies and interventions that either pull carbon dioxide from the air and store it securely or enhance the systems that naturally absorb carbon today.
Carbon removal is not, inherently, a license to continue emitting — it is far cheaper and easier to reduce the flow of emissions into the atmosphere than it is to remove them after the fact. Climate action has been so slow, however, that removing carbon has become a pressing consideration.
There are many technical, political, and economic challenges to deploying carbon removal at a meaningful scale. This guide will introduce you to some of those challenges, along with the basics of what carbon removal is, the rationale for trying to do it, and the risks and trade-offs we’ll encounter along the way. Let’s dive in.
Variously called carbon removal, carbon dioxide removal, CDR, and negative emissions technologies, all of these terms refer to efforts to suck carbon from the atmosphere and store it in places where it will not warm the planet, such as oceans, soils, plants, and underground. The science behind carbon removal spans atmospheric studies, oceanography, biology, geology, chemistry, and engineering. The carbon removal “industry” overlaps with oil and gas drilling, farming, forestry, mining, and construction — sometimes several of these sectors at once.
Carbon removal encompasses an astonishingly wide range of activities, but the two best known examples are probably the simple practice of planting a tree and the complex engineering project of building a “direct air capture system.” The latter are typically big machines that use industrial-sized fans to blow air through a material that filters carbon dioxide, and then apply heat to extract the carbon from the filter.
But there are many other methods that fall somewhere in between. “Enhanced rock weathering” involves taking minerals that are known to slowly pull carbon from the air as they break down over millennia and trying to speed up those reactions by grinding them into a fine dust and spreading it on agricultural fields. In “ocean alkalinity enhancement,” minerals are deposited directly into the ocean, catalyzing chemical reactions that may enable surface waters to soak up more carbon from the atmosphere. Companies are also experimenting with ways to take carbon-rich organic waste, like sewage, corn stalks, and forest debris, and bury it permanently underground or transform it into more stable materials like biochar.

If you read the words “carbon capture” literally, then yes, carbon removal involves capturing carbon. It’s common to see news articles use the terms interchangeably. But “carbon capture” is also the name for a technology that addresses a very different problem, with different challenges and implications. For that reason, it’s useful to distinguish carbon removal as its own category.
By definition, carbon removal deals with carbon that was previously emitted into the atmosphere — the feathers piling up in the duvet. Carbon capture, by contrast, has historically referred to systems that collect carbon from the flue of an industrial site, like a power plant, before it can enter the atmosphere.
Some carbon removal methods, such as the aforementioned direct air capture machines, share equipment with carbon capture. Both might use materials called sorbents to separate carbon from flue gas or from the air, and both rely on pipelines and drilling to transport the carbon to underground storage wells. But carbon capture cleans up and extends the relevance of present-day industrial processes and fuels. Carbon removal can be deployed concurrent with or independent of today’s energy systems and addresses the legacy carbon still hanging around.
There are different opinions on this. Some consider “geoengineering” to mean any large-scale intervention to counteract climate change. Others reserve the term for interventions that deal only with the effects of climate change, rather than the root cause. For example, solar radiation management, an idea to release tiny particles into the atmosphere that reflect sunlight back into space, would cool the Earth but not change the concentration of carbon in the atmosphere. If we started to do it at scale and then stopped, global warming would rear right back, unless and until the carbon blanketing the atmosphere was removed.
Any global cooling achieved by carbon removal, by contrast, would likely be more durable. To be clear, scientists don’t propose trying to use carbon removal to bring global average temperatures back down to levels seen during the pre-industrial period. It would already take an almost unimaginably large-scale effort to cool the planet just a half a degree or so with carbon removal — more on that in a bit.
While scientists have been talking about carbon removal for decades, a sense of urgency to develop practicable solutions emerged in the years following the 2015 Paris Climate Agreement. The signatories to that United Nations agreement, which included almost every nation in the world, committed to limit warming to “well below 2 degrees Celsius above pre-industrial levels” and strive for no more than 1.5 degrees of warming.
When scientists with the United Nations’ Intergovernmental Panel on Climate Change reviewed more than a thousand modeled scenarios mapping out how the world could achieve these goals, they found that it would be extraordinarily difficult without some degree of carbon removal. We had emitted so much by that point and made so little progress to change our energy systems that success required either cutting emissions at an unfathomably fast clip, cutting emissions more gradually and rapidly scaling up carbon removal to counteract the residuals, or “overshooting” the temperature targets altogether and using carbon removal to back into them.
If limiting warming to 1.5 degrees was a stretch back then, today it’s become even more implausible. “Recent warming trends and the lack of adequate mitigation measures make it clear that the 1.5°C goal will not be met,” reads a January 2025 report from the independent climate science research group Berkeley Earth. The authors expect the threshold to be crossed in the next five to 10 years. Another independent research group, Climate Action Tracker, estimates that current policies put the world on track to warm 2.7 degrees by the end of the century.
To many, carbon removal may seem Sisyphean. As long as we’re still flooding the atmosphere with carbon, trying to take it out bit by bit sounds futile.
But our relatively slow progress cleaning up our energy systems only strengthens the case to develop carbon removal. Just think of all the carbon that’s continuing to accumulate! If we reach a point in the future where energy is cleaner and emissions are significantly lower, carbon removal offers a chance to siphon out some of it and start to reverse the dangerous effects of climate change. If we don’t start building that capacity today, future generations will not have that option.
Scientists also make the case that carbon removal will be essential to halting climate change, never mind reversing it. That’s because there are some human activities that are so difficult or expensive to decarbonize — think commercial aviation, shipping, agriculture — that it may be easier, more economical, or even more environmentally friendly to remove the greenhouse gases they emit after the fact. Stopping the planet from warming does not necessarily require eliminating all emissions. The more likely path is to achieve “net zero,” a point where any remaining emissions are counterbalanced by an equal amount of carbon removal, including from human activities as well as natural carbon sinks.
It would certainly be easier, less expensive, and less resource-intensive to cut emissions today than it will be to remove them in the future. Some scientists have even argued we may be better off assuming carbon removal will not work at scale, as that might motivate more rapid emissions reductions. But the IPCC concluded pretty definitively in 2022 that carbon removal will be required if we want to stabilize global temperatures below 2 degrees this century.
The Paris Agreement temperature targets are not thresholds after which the world falls apart. But every tenth of a degree of warming will strain the Earth’s systems and test human survival more than the last. Abandoning carbon removal means accepting whatever dangerous and devastating effects we fail to avoid.
The latest edition of the “State of CDR” report, put together by a group of leading carbon removal researchers, found that all of the Paris Agreement-consistent scenarios modeled in the scientific literature require removing between 4 billion and 6 billion metric tons of carbon per year by 2035, and between 6 billion and 10 billion metric tons by 2050. For context, they estimate that the world currently removes about 2 billion metric tons of carbon per year over and above what the Earth would naturally absorb without human interference, 99% of which comes from planting trees and managing forests.
These estimates, however, are steeped in uncertainty, as the models make assumptions about the cost and speed of decarbonization and society’s willingness to make behavioral changes such as eating less meat and flying less. We could work toward other futures with less reliance on carbon removal. We could also passively drift toward one that calls for far more.
In short, the amount of carbon removal that may be desirable in the future depends largely on how quickly we reduce emissions and how successful we are in solving the hardest-to-decarbonize parts of the economy. It also depends on what kinds of trade-offs society is willing to make. Large-scale carbon removal would likely be resource-intensive, requiring a lot of land, energy, or both, and could impinge on other sustainability goals.
Afforestation and reforestation are responsible for most carbon removal that happens today, and planting more trees is essential to tackling climate change. But it would be a mistake to bank our carbon removal strategy on that approach alone. For one, depending on how much carbon removal is needed, there may not be enough land that can or should be forested without encroaching on food production or other uses. Large-scale tree planting efforts also often produce monoculture plantations, which are an inexpensive way to maximize carbon sequestration but can harm biodiversity.
The other argument for developing alternative solutions has to do with time. As I explained earlier, carbon dioxide emissions can stay in the atmosphere for millennia. Most tree species do not live longer than 1,000 years, and some are known to survive only for a few decades. The carbon stored in trees is vulnerable to fires, pests, disease, drought, and the simple fact of mortality. Climate change is already increasing these risks.
If we use carbon removal to neutralize residual fossil fuel emissions — which, again, could help us halt warming faster than we otherwise would be able to — the carbon will need to stay out of the atmosphere for as long as the emissions stay in. When we rely on trees to offset CO2 emissions, the climate scientist Zeke Hausfather wrote in a 2022 New York Times op-ed, we “risk merely hitting the climate ‘snooze’ button, kicking the can to future generations who will have to deal with those emissions.”
Every form of carbon removal has trade-offs. Direct air capture uses lots of energy; enhanced rock weathering relies on dirty mining processes and its effectiveness is difficult to measure. It’s still too early to know the extent to which these can be minimized, or to say what the ideal mix of solutions looks like.
There are hundreds of companies and research labs around the world working on various methods to remove carbon from the atmosphere, and the number of real-world projects is growing every year. But the field’s progress is limited by funding. There’s no natural market for carbon removal — it’s essentially a public service. Most of the money going into the field has come from tech companies like Microsoft and Stripe, which have voluntarily paid for carbon removals that haven’t happened yet to help startups access capital to deploy demonstration projects.
Experts across the industry say that in order for carbon removal to scale, governments will need to play a much bigger role. For one, they’ll likely need to pony up for research and development. The U.S. government has been spending about $1 billion per year to support carbon removal research, but according to one estimate, we’ll need to scale that to $100 billion per year by 2050 in order to make the technology set a viable solution. Many argue that compliance markets, in which governments require companies to lower their emissions and permit the purchase of carbon removal to meet targets, will be key to creating sustained demand. (These are not to be confused with carbon offsets, which have also been part of these markets, but have been more focused on projects that avoid emissions.) That’s already starting to happen abroad — this summer, the U.K. decided to incorporate removals into its emissions cap and trade program in 2029, and the E.U. proposed doing the same.
The few programs we do have in the U.S., on the other hand, are currently at risk. Congress appropriated $3.5 billion to the Department of Energy in 2021 to develop several direct air capture “hubs,” but Secretary of Energy Chris Wright may try to cancel the program. The agency also had a pilot program in which it planned to pre-pay for carbon removal, similar to what the tech companies have done, but it’s unclear whether that will move forward. But there’s more action in other countries.
Another central preoccupation in the field today is the development of robust standards that ensure we can accurately measure and report how much carbon is removed by each method. While this is relatively straightforward for a direct air capture system, which is a closed system, it’s much harder for enhanced rock weathering, for example, where there are a lot of outside variables that could affect the fate of the carbon.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Agriculture startups are suddenly some of the hottest bets in climate tech, according to the results of our Insiders Survey.
Innovations in agriculture can seem like the neglected stepchild of the climate tech world. While food and agriculture account for about a quarter of global emissions, there’s not a lot of investment in the space — or splashy breakthroughs to make the industry seem that investible in the first place. In transportation and energy, “there is a Tesla, there is an EnPhase,” Cooper Rinzler, a partner at Breakthrough Energy Ventures, told me. “Whereas in ag tech, tell me when the last IPO that was exciting was?”
That may be changing, however. Multiple participants in Heatmap’s Insiders Survey cited ag tech companies Pivot Bio and Nitricity — both of which are pursuing alternate approaches to conventional ammonia-based fertilizers — as among the most exciting climate tech companies working today.
Studies estimate that fertilizer production and use alone account for roughly 5% of global emissions. That includes emissions from the energy-intensive Haber–Bosch process, which synthesizes ammonia by combining nitrogen from the air with hydrogen at extremely high temperatures, as well as nitrous oxide released from the soil after fertilizer is applied. N2O is about 265 times more potent than carbon dioxide over a 100-year timeframe and accounts for roughly 70% of fertilizer-related emissions, as soil microbes convert excess nitrogen that crops can’t immediately absorb into nitrous oxide.
“If we don’t solve nitrous oxide, it on its own is enough of a radiative force that we can’t meet all of our goals,” Rinzler said, referring to global climate targets at large.
Enter what some consider one of the most promising agricultural innovations, perhaps since the invention of the Haber–Bosch process itself over a century ago — Pivot Bio. This startup, founded 15 years ago, engineers soil microbes to convert about 400 times more atmospheric nitrogen into ammonia than non-engineered microbe strains naturally would. “They are mini Haber–Bosch facilities, for all intents and purposes,” Pivot Bio’s CEO Chris Abbott told me, referring to the engineered microbes themselves.
The startup has now raised over $600 million in total funding and is valued at over $2 billion. And after toiling in the ag tech trenches for a decade and a half, this will be the first full year the company’s biological fertilizers — which are applied to either the soil or seed itself — will undercut the price of traditional fertilizers.
“Farmers pay 20% to 25% less for nitrogen from our product than they do for synthetic nitrogen,” Abbott told me. “Prices [for traditional fertilizers] are going up again this spring, like they did last year. So that gap is actually widening, not shrinking.”
Peer reviewed studies also show that Pivot’s treatments boost yields for corn — its flagship crop — while preliminary data indicates that the same is true forcotton, which Pivot expanded into last year. The company also makes fertilizers for wheat, sorghum, and other small grains.
Pivot is now selling these products in stores where farmers already pick up seeds and crop treatments, rather than solely through its independent network of sales representatives, making the microbes more likely to become the default option for growers. But they won’t completely replace traditional fertilizer anytime soon, as Pivot’s treatments can still meet only about 20% to 25% of a large-scale crop’s nitrogen demand, especially during the early stages of plant growth, though it’s developing products that could push that number to 50% or higher, Abbott told me.
All this could have an astronomical environmental impact if deployed successfully at scale. “From a water perspective, we use about 1/1000th the water to produce the same amount of nitrogen,” Abbott said. From an emissions perspective, replacing a ton of synthetic nitrogen fertilizer with Pivot Bio’s product prevents the equivalent of around 11 tons of carbon dioxide from entering the atmosphere. Given the quantity of Pivot’s fertilizer that has been deployed since 2022, Abbott estimates that scales to approximately 1.5 million tons of cumulative avoided CO2 equivalent.
“It’s one of the very few cases that I’ve ever come across in climate tech where you have this giant existing commodity market that’s worth more than $100 billion and you’ve found a solution that offers a cheaper product that is also higher value,” Rinzler told me. BEV led the company’s Series B round back in 2018, and has participated in its two subsequent rounds as well.
Meanwhile, Nitricity — a startup spun out of Stanford University in 2018 — is also aiming to circumvent the Haber–Bosch process and replace ammonia-based and organic animal-based fertilizers such as manure with a plant-based mixture made from air, water, almond shells, and renewable energy. The company said that its proprietary process converts nitrogen and other essential nutrients derived from combusted almond shells into nitrate — the form of nitrogen that plants can absorb. It then “brews” that into an organic liquid fertilizer that Nitricity’s CEO, Nico Pinkowski, describes as looking like a “rich rooibos tea,” capable of being applied to crops through standard irrigation systems.
For confidentiality reasons, the company was unable to provide more precise technical details regarding how it sources and converts sufficient nitrogen into a usable form via only air, water, and almond shells, given that shells don’t contain much nitrogen, and turning atmospheric nitrogen into a plant-ready form typically involves the dreaded Haber–Bosch process.
But investors have bought in, and the company is currently in the midst of construction on its first commercial-scale fertilizer factory in Central California, which is expected to begin production this year. Funding for the first-of-a-kind plant came from Trellis Climate and Elemental Impact, both of which direct philanthropic capital toward early-stage, capital-intensive climate projects. The facility will operate on 100% renewable power through a utility-run program that allows customers to opt into renewable-only electricity by purchasing renewable energy certificates,
Pinkowski told me the new plant will represent a 100‑fold increase in Nitricity’s production capacity, which currently sits at 80 tons per year from its pilot plant. “In comparison to premium conventional fertilizers, we see about a 10x reduction in emissions,” Pinkowski told me, factoring in greenhouse gases from both production and on-field use. “In comparison to the most standard organic fertilizers, we see about a 5x reduction in emissions.”
The company says trial data indicates that its fertilizer allows for more efficient nitrogen uptake, thus lowering nitrous oxide emissions and allowing farmers to cut costs by simply applying less product. According to Pinkowski, Nitricity’s current prices are at parity or slightly lower than most liquid organic fertilizers on the market. And that has farmers really excited — the new plant’s entire output is already sold through 2028.
“Being able to mitigate emissions certainly helps, but it’s not what closes the deal,” he told me. “It’s kind of like the icing on the cake.”
Initially, the startup is targeting the premium organic and sustainable agriculture market, setting it apart from Pivot Bio’s focus on large commodity staple crops. “You saw with the electrification of vehicles, there was a high value beachhead product, which was a sports car,” Pinkowski told me. “In the ag space, that opportunity is organics.”
But while big-name backers have lined up behind Pivot and Nitricity, the broader ag tech sector hasn’t been as fortunate in its friends, with funding and successful scale-up slowing for many companies working in areas such as automation, indoor farming, agricultural methane mitigation, and lab-grown meat.
Everyone’s got their theories for why this could be, with Lara Pierpoint of Trellis telling me that part of the issue is “the way the federal government is structured around this work.” The Department of Agriculture allocates relatively few resources to technological innovation compared to the Department of Energy, which in turn does little to support agricultural work outside of its energy-specific mandate. That ends up meaning that, as Pierpoint put it, ”this set of activities sort of falls through the cracks” of the government funding options, leaving agricultural communities and companies alike struggling to find federal programs and grant opportunities.
“There’s also a mismatch between farmers and the culture of farming and agriculture in the United States, and just even geographically where the innovation ecosystems are,” Emily Lewis O’Brien, a principal at Trellis who led the team’s investment in Nitricity, told me of the social and regional divides between entrepreneurs, tech investors and rural growers. “Bridging that gap has been a little bit tricky.”
Still, investors remain optimistic that one big win will help kick the money machines into motion, and with Pivot Bio and Nitricity, there are finally some real contenders poised to transform the sector. “We’re going to wake up one day and someone’s going to go, holy shit, that was fast,” Abbott told me. “And it’s like, well you should have been here for the decade of hard work before. It’s always fast at the end.”
The most popular scope 3 models assume an entirely American supply chain. That doesn’t square with reality.
“You can’t manage what you don’t measure,” the adage goes. But despite valiant efforts by companies to measure their supply chain emissions, the majority are missing a big part of the picture.
Widely used models for estimating supply chain emissions simplify the process by assuming that companies source all of their goods from a single country or region. This is obviously not how the world works, and manufacturing in the United States is often cleaner than in countries with coal-heavy grids, like China, where many of the world’s manufactured goods actually come from. A study published in the journal Nature Communications this week found that companies using a U.S.-centric model may be undercounting their emissions by as much as 10%.
“We find very large differences in not only the magnitude of the upstream carbon footprint for a given business, but the hot spots, like where there are more or less emissions happening, and thus where a company would want to gather better data and focus on reducing,” said Steven Davis, a professor of Earth system science in the Stanford Doerr School of Sustainability and lead author of the paper.
Several of the authors of the paper, including Davis, are affiliated with the software startup Watershed, which helps companies measure and reduce their emissions. Watershed already encourages its clients to use its own proprietary multi-region model, but the company is now working with Stanford and the consulting firm ERG to build a new and improved tool called Cornerstone that will be freely available for anyone to use.
“Our hope is that with the release of scientific papers like this one and with the launch of Cornerstone, we can help the ecosystem transition to higher quality open access datasets,” Yohanna Maldonado, Watershed’s Head of Climate Data told me in an email.
The study arrives as the Greenhouse Gas Protocol, a nonprofit that publishes carbon accounting standards that most companies voluntarily abide by, is in the process of revising its guidance for calculating “scope 3” emissions. Scope 3 encompasses the carbon that a company is indirectly responsible for, such as from its supply chain and from the use of its products by customers. Watershed is advocating that the new standard recommend companies use a multi-region modeling approach, whether Watershed’s or someone else’s.
Davis walked me through a hypothetical example to illustrate how these models work in practice. Imagine a company that manufactures exercise bikes — it assembles the final product in a factory in the U.S., but sources screws and other components from China. The typical way this company would estimate the carbon footprint of its supply chain would be to use a dataset published by the U.S. Environmental Protection Agency that estimates the average emissions per dollar of output for about 400 sectors of the U.S. economy. The EPA data doesn’t get down to the level of detail of a specific screw, but it does provide an estimate of emissions per dollar of output for, say, hardware manufacturing. The company would then multiply the amount of money it spent on screws by that emissions factor.
Companies take this approach because real measurements of supply chain emissions are rare. It’s not yet common practice for suppliers to provide this information, and supply chains are so complex that a product might pass through several different hands before reaching the company trying to do the calculation. There are emerging efforts to use remote sensing and other digital data collection and monitoring systems to create more accurate, granular datasets, Alexia Kelly, a veteran corporate sustainability executive and current director at the High Tide Foundation, told me. In the meantime, even though sector-level emissions estimates are rough approximations, they can at least give a company an indication of which parts of their supply chain are most problematic.
When those estimates don’t take into account country of origin, however, they don’t give companies an accurate picture of which parts of their supply chains need the most attention.
The new study used Watershed’s multi-region model to look at how different types of companies’ emissions would change if they used supply chain data that better reflected the global nature of supply chains. Davis is the first to admit that the study’s findings of higher emissions are not surprising. The carbon accounting field has long been aware of the shortcomings of single-region models. There hasn’t been a big push to change that, however, because the exercise is already voluntary and taking into account global supply chains is significantly more difficult. Many countries don’t publish emissions and economic data, and those that do use a variety of methods to report it. Reconciling those differences adds to the challenge.
While the overall conclusion isn’t surprising, the study may be the first to show the magnitude of the problem and illustrate how more accurate modeling could redirect corporate sustainability efforts. “As far as I know, there is no similar analysis like this focused on corporate value chain emissions,” Derik Broekhoff, a senior scientist at the Stockholm Environment Institute, told me in an email. “The research is an important reminder for companies (and standard setters like the Greenhouse Gas Protocol), who in practice appear to be overlooking foreign supply chain emissions in large numbers.”
Broekhoff said Watershed’s upcoming open-source model “could provide a really useful solution.” At the same time, he said, it’s worth noting that this whole approach of calculating emissions based on dollars spent is subject to significant uncertainty. “Using spending data to estimate supply chain emissions provides only a first-order approximation at best!”
The decision marks the Trump administration’s second offshore wind defeat this week.
A federal court has lifted Trump’s stop work order on the Empire Wind offshore wind project, the second defeat in court this week for the president as he struggles to stall turbines off the East Coast.
In a brief order read in court Thursday morning, District Judge Carl Nichols — a Trump appointee — sided with Equinor, the Norwegian energy developer building Empire Wind off the coast of New York, granting its request to lift a stop work order issued by the Interior Department just before Christmas.
Interior had cited classified national security concerns to justify a work stoppage. Now, for the second time this week, a court has ruled the risks alleged by the Trump administration are insufficient to halt an already-permitted project midway through construction.
Anti-offshore wind activists are imploring the Trump administration to appeal this week’s injunctions on the stop work orders. “We are urging Secretary Burgum and the Department of Interior to immediately appeal this week’s adverse federal district court rulings and seek an order halting all work pending appellate review,” Robin Shaffer, president of Protect Our Coast New Jersey, said in a statement texted to me after the ruling came down.
Any additional delays may be fatal for some of the offshore wind projects affected by Trump’s stop work orders, irrespective of the rulings in an appeal. Both Equinor and Orsted, developer of the Revolution Wind project, argued for their preliminary injunctions because even days of delay would potentially jeopardize access to vessels necessary for construction. Equinor even told the court that if the stop work order wasn’t lifted by Friday — that is, January 16 — it would cancel Empire Wind. Though Equinor won today, it is nowhere near out of the woods.
More court action is coming: Dominion will present arguments on Friday in federal court against the stop work order halting construction of its Coastal Virginia offshore wind project.