You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Plus how it’s different from carbon capture — and, while we’re at it, carbon offsets.

At the heart of the climate crisis lies a harsh physical reality: Once carbon dioxide enters the atmosphere, it can stay there for hundreds or even thousands of years. Although some carbon does cycle in and out of the air via plants, soils, and the ocean, we are emitting far more than these systems can handle, meaning that most of it is just piling up. Burning fossil fuels is like continuously stuffing feathers into a duvet blanketing the Earth.
But there may be ways to begin plucking them out. That’s the promise of carbon removal, a category of technologies and interventions that either pull carbon dioxide from the air and store it securely or enhance the systems that naturally absorb carbon today.
Carbon removal is not, inherently, a license to continue emitting — it is far cheaper and easier to reduce the flow of emissions into the atmosphere than it is to remove them after the fact. Climate action has been so slow, however, that removing carbon has become a pressing consideration.
There are many technical, political, and economic challenges to deploying carbon removal at a meaningful scale. This guide will introduce you to some of those challenges, along with the basics of what carbon removal is, the rationale for trying to do it, and the risks and trade-offs we’ll encounter along the way. Let’s dive in.
Variously called carbon removal, carbon dioxide removal, CDR, and negative emissions technologies, all of these terms refer to efforts to suck carbon from the atmosphere and store it in places where it will not warm the planet, such as oceans, soils, plants, and underground. The science behind carbon removal spans atmospheric studies, oceanography, biology, geology, chemistry, and engineering. The carbon removal “industry” overlaps with oil and gas drilling, farming, forestry, mining, and construction — sometimes several of these sectors at once.
Carbon removal encompasses an astonishingly wide range of activities, but the two best known examples are probably the simple practice of planting a tree and the complex engineering project of building a “direct air capture system.” The latter are typically big machines that use industrial-sized fans to blow air through a material that filters carbon dioxide, and then apply heat to extract the carbon from the filter.
But there are many other methods that fall somewhere in between. “Enhanced rock weathering” involves taking minerals that are known to slowly pull carbon from the air as they break down over millennia and trying to speed up those reactions by grinding them into a fine dust and spreading it on agricultural fields. In “ocean alkalinity enhancement,” minerals are deposited directly into the ocean, catalyzing chemical reactions that may enable surface waters to soak up more carbon from the atmosphere. Companies are also experimenting with ways to take carbon-rich organic waste, like sewage, corn stalks, and forest debris, and bury it permanently underground or transform it into more stable materials like biochar.

If you read the words “carbon capture” literally, then yes, carbon removal involves capturing carbon. It’s common to see news articles use the terms interchangeably. But “carbon capture” is also the name for a technology that addresses a very different problem, with different challenges and implications. For that reason, it’s useful to distinguish carbon removal as its own category.
By definition, carbon removal deals with carbon that was previously emitted into the atmosphere — the feathers piling up in the duvet. Carbon capture, by contrast, has historically referred to systems that collect carbon from the flue of an industrial site, like a power plant, before it can enter the atmosphere.
Some carbon removal methods, such as the aforementioned direct air capture machines, share equipment with carbon capture. Both might use materials called sorbents to separate carbon from flue gas or from the air, and both rely on pipelines and drilling to transport the carbon to underground storage wells. But carbon capture cleans up and extends the relevance of present-day industrial processes and fuels. Carbon removal can be deployed concurrent with or independent of today’s energy systems and addresses the legacy carbon still hanging around.
There are different opinions on this. Some consider “geoengineering” to mean any large-scale intervention to counteract climate change. Others reserve the term for interventions that deal only with the effects of climate change, rather than the root cause. For example, solar radiation management, an idea to release tiny particles into the atmosphere that reflect sunlight back into space, would cool the Earth but not change the concentration of carbon in the atmosphere. If we started to do it at scale and then stopped, global warming would rear right back, unless and until the carbon blanketing the atmosphere was removed.
Any global cooling achieved by carbon removal, by contrast, would likely be more durable. To be clear, scientists don’t propose trying to use carbon removal to bring global average temperatures back down to levels seen during the pre-industrial period. It would already take an almost unimaginably large-scale effort to cool the planet just a half a degree or so with carbon removal — more on that in a bit.
While scientists have been talking about carbon removal for decades, a sense of urgency to develop practicable solutions emerged in the years following the 2015 Paris Climate Agreement. The signatories to that United Nations agreement, which included almost every nation in the world, committed to limit warming to “well below 2 degrees Celsius above pre-industrial levels” and strive for no more than 1.5 degrees of warming.
When scientists with the United Nations’ Intergovernmental Panel on Climate Change reviewed more than a thousand modeled scenarios mapping out how the world could achieve these goals, they found that it would be extraordinarily difficult without some degree of carbon removal. We had emitted so much by that point and made so little progress to change our energy systems that success required either cutting emissions at an unfathomably fast clip, cutting emissions more gradually and rapidly scaling up carbon removal to counteract the residuals, or “overshooting” the temperature targets altogether and using carbon removal to back into them.
If limiting warming to 1.5 degrees was a stretch back then, today it’s become even more implausible. “Recent warming trends and the lack of adequate mitigation measures make it clear that the 1.5°C goal will not be met,” reads a January 2025 report from the independent climate science research group Berkeley Earth. The authors expect the threshold to be crossed in the next five to 10 years. Another independent research group, Climate Action Tracker, estimates that current policies put the world on track to warm 2.7 degrees by the end of the century.
To many, carbon removal may seem Sisyphean. As long as we’re still flooding the atmosphere with carbon, trying to take it out bit by bit sounds futile.
But our relatively slow progress cleaning up our energy systems only strengthens the case to develop carbon removal. Just think of all the carbon that’s continuing to accumulate! If we reach a point in the future where energy is cleaner and emissions are significantly lower, carbon removal offers a chance to siphon out some of it and start to reverse the dangerous effects of climate change. If we don’t start building that capacity today, future generations will not have that option.
Scientists also make the case that carbon removal will be essential to halting climate change, never mind reversing it. That’s because there are some human activities that are so difficult or expensive to decarbonize — think commercial aviation, shipping, agriculture — that it may be easier, more economical, or even more environmentally friendly to remove the greenhouse gases they emit after the fact. Stopping the planet from warming does not necessarily require eliminating all emissions. The more likely path is to achieve “net zero,” a point where any remaining emissions are counterbalanced by an equal amount of carbon removal, including from human activities as well as natural carbon sinks.
It would certainly be easier, less expensive, and less resource-intensive to cut emissions today than it will be to remove them in the future. Some scientists have even argued we may be better off assuming carbon removal will not work at scale, as that might motivate more rapid emissions reductions. But the IPCC concluded pretty definitively in 2022 that carbon removal will be required if we want to stabilize global temperatures below 2 degrees this century.
The Paris Agreement temperature targets are not thresholds after which the world falls apart. But every tenth of a degree of warming will strain the Earth’s systems and test human survival more than the last. Abandoning carbon removal means accepting whatever dangerous and devastating effects we fail to avoid.
The latest edition of the “State of CDR” report, put together by a group of leading carbon removal researchers, found that all of the Paris Agreement-consistent scenarios modeled in the scientific literature require removing between 4 billion and 6 billion metric tons of carbon per year by 2035, and between 6 billion and 10 billion metric tons by 2050. For context, they estimate that the world currently removes about 2 billion metric tons of carbon per year over and above what the Earth would naturally absorb without human interference, 99% of which comes from planting trees and managing forests.
These estimates, however, are steeped in uncertainty, as the models make assumptions about the cost and speed of decarbonization and society’s willingness to make behavioral changes such as eating less meat and flying less. We could work toward other futures with less reliance on carbon removal. We could also passively drift toward one that calls for far more.
In short, the amount of carbon removal that may be desirable in the future depends largely on how quickly we reduce emissions and how successful we are in solving the hardest-to-decarbonize parts of the economy. It also depends on what kinds of trade-offs society is willing to make. Large-scale carbon removal would likely be resource-intensive, requiring a lot of land, energy, or both, and could impinge on other sustainability goals.
Afforestation and reforestation are responsible for most carbon removal that happens today, and planting more trees is essential to tackling climate change. But it would be a mistake to bank our carbon removal strategy on that approach alone. For one, depending on how much carbon removal is needed, there may not be enough land that can or should be forested without encroaching on food production or other uses. Large-scale tree planting efforts also often produce monoculture plantations, which are an inexpensive way to maximize carbon sequestration but can harm biodiversity.
The other argument for developing alternative solutions has to do with time. As I explained earlier, carbon dioxide emissions can stay in the atmosphere for millennia. Most tree species do not live longer than 1,000 years, and some are known to survive only for a few decades. The carbon stored in trees is vulnerable to fires, pests, disease, drought, and the simple fact of mortality. Climate change is already increasing these risks.
If we use carbon removal to neutralize residual fossil fuel emissions — which, again, could help us halt warming faster than we otherwise would be able to — the carbon will need to stay out of the atmosphere for as long as the emissions stay in. When we rely on trees to offset CO2 emissions, the climate scientist Zeke Hausfather wrote in a 2022 New York Times op-ed, we “risk merely hitting the climate ‘snooze’ button, kicking the can to future generations who will have to deal with those emissions.”
Every form of carbon removal has trade-offs. Direct air capture uses lots of energy; enhanced rock weathering relies on dirty mining processes and its effectiveness is difficult to measure. It’s still too early to know the extent to which these can be minimized, or to say what the ideal mix of solutions looks like.
There are hundreds of companies and research labs around the world working on various methods to remove carbon from the atmosphere, and the number of real-world projects is growing every year. But the field’s progress is limited by funding. There’s no natural market for carbon removal — it’s essentially a public service. Most of the money going into the field has come from tech companies like Microsoft and Stripe, which have voluntarily paid for carbon removals that haven’t happened yet to help startups access capital to deploy demonstration projects.
Experts across the industry say that in order for carbon removal to scale, governments will need to play a much bigger role. For one, they’ll likely need to pony up for research and development. The U.S. government has been spending about $1 billion per year to support carbon removal research, but according to one estimate, we’ll need to scale that to $100 billion per year by 2050 in order to make the technology set a viable solution. Many argue that compliance markets, in which governments require companies to lower their emissions and permit the purchase of carbon removal to meet targets, will be key to creating sustained demand. (These are not to be confused with carbon offsets, which have also been part of these markets, but have been more focused on projects that avoid emissions.) That’s already starting to happen abroad — this summer, the U.K. decided to incorporate removals into its emissions cap and trade program in 2029, and the E.U. proposed doing the same.
The few programs we do have in the U.S., on the other hand, are currently at risk. Congress appropriated $3.5 billion to the Department of Energy in 2021 to develop several direct air capture “hubs,” but Secretary of Energy Chris Wright may try to cancel the program. The agency also had a pilot program in which it planned to pre-pay for carbon removal, similar to what the tech companies have done, but it’s unclear whether that will move forward. But there’s more action in other countries.
Another central preoccupation in the field today is the development of robust standards that ensure we can accurately measure and report how much carbon is removed by each method. While this is relatively straightforward for a direct air capture system, which is a closed system, it’s much harder for enhanced rock weathering, for example, where there are a lot of outside variables that could affect the fate of the carbon.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The storm currently battering Jamaica is the third Category 5 to form in the Atlantic Ocean this year, matching the previous record.
As Hurricane Melissa cuts its slow, deadly path across Jamaica on its way to Cuba, meteorologists have been left to marvel and puzzle over its “rapid intensification” — from around 70 miles per hour winds on Sunday to 185 on Tuesday, from tropical storm to Category 5 hurricane in just a few days, from Category 2 occurring in less than 24 hours.
The storm is “one of the most powerful hurricane landfalls on record in the Atlantic basin,” the National Weather Service said Tuesday afternoon. Though the NWS expected “continued weakening” as the storm crossed Jamaica, “Melissa is expected to reach southeastern Cuba as an extremely dangerous major hurricane, and it will still be a strong hurricane when it moves across the southeastern Bahamas.”
So how did the storm get so strong, so fast? One reason may be the exceptionally warm Caribbean and Atlantic.
“The part of the Atlantic where Hurricane Melissa is churning is like a boiler that has been left on for too long. The ocean waters are around 30 degrees Celsius, 2 to 3 degrees above normal, and the warmth runs deep,” University of Redding research scientist Akshay Deoras said in a public statement. (Those exceedingly warm temperatures are “up to 700 times more likely due to human-caused climate change,” the climate communication group Climate Central said in a press release.)
Based on Intergovernmental Panel on Climate Change reports, the National Oceanic and Atmospheric Administration concluded in 2024 that “tropical cyclone intensities globally are projected to increase” due to anthropogenic climate change, and that “rapid intensification is also projected to increase.”
NOAA also noted that research suggested “an observed increase in the probability of rapid intensification” for tropical cyclones from 1982 to 2017 The review was still circumspect, however, labeling “increased intensities” and “rapid intensification” as “examples of possible emerging human influences.”
What is well known is that hurricanes require warm water to form — at least 80 degrees Fahrenheit, according to NOAA. “As long as the base of this weather system remains over warm water and its top is not sheared apart by high-altitude winds, it will strengthen and grow.”
A 2023 paper by hurricane researcher Andra Garner argued that between 1971 and 2020, rates of intensification of Atlantic tropical storms “have already changed as anthropogenic greenhouse gas emissions have warmed the planet and oceans,” and specifically that the number of these storms that intensify from Category 1 or weaker “into a major hurricane” — as Melissa did so quickly — “has more than doubled in the modern era relative to the historical era.”
“Hurricane Melissa has been astonishing to watch — even as someone who studies how these storms are impacted by a warming climate, and as someone who knows that this kind of dangerous storm is likely to become more common as we warm the planet,” Garner told me by email. She likened the warm ocean waters to “an extra shot of caffeine in your morning coffee — it’s not only enough to get the storm going, it’s an extra boost that can really super-charge the storm.”
This year has been an outlier for the Atlantic with three Category 5 storms, University of Miami senior research associate Brian McNoldy wrote on his blog. “For only the second time in recorded history, an Atlantic season has produced three Category 5 hurricanes,” with wind speeds reaching and exceeding 157 miles per hour, he wrote. “The previous year was 2005. This puts 2025 in an elite class of hurricane seasons. It also means that nearly 7% of all known Category 5 hurricanes have occurred just in this year.” One of those Category 5 storms in 2005 was Hurricane Katrina.
Jamaican emergency response officials said that thousands of people were already in shelters amidst storm surge, flooding, power outages, and landslides. Even as the center of the storm passed over Jamaica Tuesday evening, the National Weather Service warned that “damaging winds, catastrophic flash flooding and life-threatening storm surge continues in Jamaica.”
With Trump turning the might of the federal government against the decarbonization economy, these investors are getting ready to consolidate — and, hopefully, profit.
Since Trump’s inauguration, investors have been quick to remind me that some of the world’s strongest, most resilient companies have emerged from periods of uncertainty, taking shape and cementing their market position amid profound economic upheaval.
On the one hand, this can sound like folks grasping at optimism during a time when Washington is taking a hammer to both clean energy policies and valuable sources of government funding. But on the other hand — well, it’s true. Google emerged from the dot-com crash with its market lead solidified, Airbnb launched amid the global financial crisis, and Sunrun rose to dominance after the first clean tech bubble burst.
The circumstances may change, but behind all of these against-the-odds successes are investors who saw opportunity where others saw risk. In the climate tech landscape of 2025, well-capitalized investors are eyeing some of the more mature sectors being battered by federal policy or market uncertainty — think solar, wind, biogas, and electric transportation — rather than the fresh-faced startups pursuing more cutting edge tech.
“History does not repeat, but it certainly rhymes,” Andrew Beebe, managing director at Obvious Ventures, told me. He was working as the chief commercial officer at the solar company Suntech Power when the first climate tech bubble collapsed in the wake of the 2008 financial crisis. Back then, venture capital and project financing dried up instantly, as banks and investors faced heavy losses from their exposure to risky assets. This time around, “there’s plenty of capital at all stages of venture,” as well as infrastructure investing, he said. That means firms can afford to swoop in to finance or acquire undervalued startups and established companies alike.
“I think you’re gonna see a lot of projects in development change hands,” Beebe told me.
Investors don’t generally publicize when the companies or projects that they’re backing become “distressed assets,” i.e. are in financial trouble, nor do they broadcast when their explicit goal is to turn said projects around. But that’s often what opportunistic investing entails.
“As investors in the energy and infrastructure space — which is inherently in transition — we take it as a very important point of our strategy to be opportunistic,” Giulia Siccardo, a managing director at Quinbrook, told me. (Prior to joining the investment firm, Siccardo was director of the Department of Energy’s Office of Manufacturing & Energy Supply Chains under President Biden.)
Quinbrook sees opportunities in biogas and renewable natural gas, a sector that once enjoyed “very cushioned margins” thanks to investor interest in corporate sustainability, Siccardo told me, but which has lately gone into a “rapid decline.” But she’s also looking at solar and storage, where developers are rushing to build projects before tax credits expire, as well as grid and transmission infrastructure, given the dire need for upgrades and buildout as load growth increases.
As of now, the only investment Quinbrook has explicitly described as opportunistic is its acquisition of a biomethane facility in Junction City, Oregon. When it opened in 2013, the facility used food waste — which otherwise would have emitted methane in a landfill — to produce renewable biogas for clean electricity generation. But after Shell acquired the plant, it switched to converting cow manure and agricultural residue into renewable natural gas for heavy-duty transportation fuels, a process that it’s operated commercially since 2021. Siccardo declined to provide information about the plant’s performance at the time of Quinbrook’s acquisition, though presumably, it has yet to reach its total production capacity of 730,000 million British thermal units per year — enough to supply about 12,000 U.S. households.
The extension of the clean fuel production tax credit, plus the potential for hyperscalers to purchase RNG credits, are still driving demand, however. And that’s increased Siccardo’s confidence in pursuing investments and acquisitions in the space. “That’s a market that, from a policy standpoint, has actually been pretty stable — and you might even say favored — by the One Big Beautiful Bill relative to other technologies,” she explained.
Solar, meanwhile, is still cheap and quick to deploy, with or without the tax credits, Siccardo told me. “If you strip away all subsidies, and are just looking at, what is the technology that’s delivering the lowest cost electron, and which technology has the least supply chain bottlenecks right now in North America —- that drives you to solar and storage,” she said.
Another leading infrastructure investment firm, Generate Capital, is also looking to cash in on the moment. After replacing its CEO and enacting company-wide layoffs, Generate’s head of external affairs, Jonah Goldman, told me that “managers who understand the [climate] space and who can take advantage of the opportunities that are underpriced in this tougher market environment are set up to succeed.”
The firm also sees major opportunities when it comes to good old solar and storage projects. In an open letter, Generate’s new CEO, David Crane, wrote that “for the first time in nearly four decades, the U.S. has an insatiable need for more power: as much as we can produce, as soon as we can, wherever and however we can produce it.”
Crane sees it as the duty of Generate and other investors to use mergers and acquisitions as a tool to help clean tech scale and mature. “If companies across our subsectors were publicly traded, the market itself would act as a centripetal force towards industry consolidation,” he wrote. But because many clean energy companies are privately funded, Crane said “it is up to us, the providers of that private capital, to force industry improvement, through consolidation and otherwise.”
Helping solar companies accelerate their construction timelines to lock in tax credit eligibility has actually become an opportunistic market of its own, Chris Creed, a managing partner at Galvanize Climate Solutions and co-head of its credit division, told me. “Helping those companies that need to start or complete their projects within a predetermined time frame because of changes in the tax credit framework became an investable opportunity for us,” Creed told me. “We have a number of deals in our near term pipeline that basically came about as a result of that.”
Given that some solar companies are bound to fare better than others, he agreed that mergers and acquisitions were likely — among competitors as well as involving companies working in different stages of a supply chain. “It wouldn’t shock me if you saw some horizontal consolidation or some vertical integration,” Creed told me.
Consolidation can only go so far, though. So while investors seem to agree that solar, storage, and even the administration’s nemesis — wind — are positioned for a long and fruitful future, when it comes to more emergent technologies, not all will survive the headwinds. Beebe thinks there’s been “irrational exuberance” around both green hydrogen and direct air capture, for example, and that seasoned investors will give those spaces a pass.
Electric mobility — e.g. EVs, electric planes, and even electrified shipping — and grid scalability — which includes upgrades to make the grid more efficient, flexible, and optimized — are two sectors that Beebe is betting will survive the turmoil.
But for all investors that have the capability to do so, for now, “the easy bet is just to move your money outside the U.S.” Beebe told me.
We might be starting to see just that. Quinbrook also invests in the U.K. and Australia, and just announced its first Canadian investment last week. It acquired an ownership stake in Elemental Clean Fuels, an energy developer making renewable fuels such as RNG, low-carbon methanol, and — yes — clean hydrogen.
Last week, Generate announced that it had closed $43 million in funding from the Canadian company Fiera Infrastructure Private Debt for its North American portfolio of anaerobic digestion projects, which produce renewable natural gas — Generate’s first cross-currency, cross-border deal.
Creed still has confidence in the U.S. market, however, telling me he’s “very bullish on American innovation.” He certainly acknowledges that it’s a tough time out there for any investor deciding where to park their money, but thinks that ultimately, “that volatility should manifest itself as excess returns to investors who are able to figure out their investment strategy and deploy in this environment.”
Exactly what firms will manage this remains an open question, and the opportunities may be short-lived — but it’s a race that plenty of investors are getting in on.
“I mean, God bless the Europeans for caring about climate.”
Bill Gates, the billionaire co-founder of Microsoft and one of the world’s most important funders of climate-related causes, has a new message: Lighten up on the “doomsday.”
In a new memo, called “Three tough truths about climate,” Gates calls for a “strategic pivot.” Climate-concerned philanthropy should focus on global health and poverty, he says, which will still cause more human suffering than global warming.
“I’m not saying we should ignore temperature-related deaths because diseases are a bigger problem,” he writes. “What I am saying is that we should deal with disease and extreme weather in proportion to the suffering they cause, and that we should go after the underlying conditions that leave people vulnerable to them. While we need to limit the number of extremely hot and cold days, we also need to make sure that fewer people live in poverty and poor health so that extreme weather isn’t such a threat to them.”
This new focus didn’t come with a change in funding priorities — but that’s partly because some big shake-ups have already happened. In February, Heatmap reported that Breakthrough Energy, Gates’ climate-focused funding group, had slashed its grant-making budget. Gates later closed Breakthrough’s policy and advocacy office altogether.
Despite eliminating those financial commitments, he still dwells on two of his longtime obsessions in the new memo: cutting the “green premium” for energy technologies, meaning the delta between the cost of carbon-emitting and clean energy technologies, and improving the measurement of how spending can do the most for human welfare. The same topics dominated his thinking when I last spoke to the billionaire at the 2023 United Nations climate conference in Dubai.
What seems to have shifted, instead, is the global political environment. The Trump administration and Elon Musk gutted the federal government’s spending on global public health causes, such as vaccines and malaria prevention. European countries have also cut back their global aid spending, although not as dramatically as the U.S.
Gates seemingly now feels called to their defense: “Vaccines are the undisputed champion of lives saved per dollar spent,” he writes, praising the vaccine alliance Gavi in particular. “Energy innovation is a good buy not because it saves lives now, but because it will provide cheap clean energy and eventually lower emissions, which will have large benefits for human welfare in the future.”
Last week, Gates shared his thinking about climate change at a roundtable with a handful of reporters. He was, as always, engaging. I’ve shared some of his new takes on climate policy below. His quotes have been edited for clarity.
The environment we’re in today, the policies for climate change are less accommodating. It’s hard to name a country where you’d say, Oh, the climate policies are more accommodating today than they have been in the past.
The thesis I had was that middle income countries — who were already, at that time, the majority of all emissions — would never pay a premium for greenness. And so you could say, well, maybe the rich countries should subsidize that. But you know, the amounts involved would get you up to, like, 4% of rich country budgets would have to be transferred to do that. And we’re at 1% and going down. And there are some other worthy things that that money goes for, other than subsidizing positive green premium type approaches. So the thesis in the book [How to Avoid a Climate Disaster, published in 2021] is we had to innovate our way to negative green premiums for the middle income countries.
Climate [change] is an evil thing in that it’s caused by rich countries and high middle-income countries and the primary burden [falls on poor countries]. When I looked into climate activists, I said, Well, this is incredible. They care about poor countries so much. That’s wonderful, that they feel guilty about it. But in fact, a lot of climate activists, they have such an extreme view of what’s going to happen in rich countries — their climate activism is not because they care about poor farmers and Africa, it’s because they have some purported view that, like, New York City, can’t deal with the flooding or the heat.
The other challenge we have in the climate movement is in order to have some degree of accountability, it was very focused on short-term goals and per-country reports. And the per-country reporting thing is, in a way, a good thing, because a country — certainly when it comes to deforestation or what it’s doing on its electric grid, there is sovereign accountability for what’s being done. But I mean, the way everybody makes steel is the same. The way everybody makes the cement, it’s the same. The way we make fertilizer, it’s all the same. And so there can’t be some wonderful surprise, where some country comes in and, you know, gives you this little number [for its Paris Agreement goals], and you go, Wow, good! You’re so tough, you’re so good, you’re so amazing. Because other than deforestation and your particular electric grid, these are all global things.
If you’re a rich country, the costs of adaptation are just one of many, many things that are not gigantic, huge percentages of GDP — you know, rebuilding L.A. so that it’s like the Getty Museum, in terms of there’s no brush that can catch on fire, there’s no roof that can catch on fire, adds about 10% cost to the rebuild. It’s not like, Oh my god, we can’t live in LA. There’s no apocalyptic story for rich countries. [Climate adaptation] is one of many things that you should pay attention to, like, Does your health system work? Does your education system work? Does your political system work? There are a variety of things that are also quite important.
The place where it gets really tough is in these poor countries. But you know, what is the greatest tool for climate adaptation? Getting rich — growing your economy is the biggest single thing, living in conditions where you don’t face big climate problems. So when you say to an African country, Hey, you have a natural gas deposit, and we’re going to try to block you from getting financing for using that natural gas deposit … It probably won’t work, because there’s a lot of money in the world. It’s not clear how you’d achieve that. And it’s also in terms of the warming effect of that natural gas, versus the improvement of the conditions of the people in that country — it’s not even a close thing.
People in the [climate] movement, we do have to say to ourselves, For the Europeans, how much were they willing to pay in order to support climate? — and did we overestimate in terms of forcing them to switch to electric cars, to buy electric heat pumps, to have their price of electricity be higher? Did we overestimate their willingness to pay with some of those policies? And you do have to be careful because if your climate policies are too aggressive, you will be unelected, and you’ll have a right-wing government that cares not a bit about climate. I mean, God bless the Europeans for caring about climate. You worry they care so much about it that the people you talk to, you won’t be able to meet with them again, because they won’t be in power.