Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Climate Tech

Why Is Thea Energy, the Fusion Company, in New Jersey?

The birthplace of electricity has more recently been known more for smokestacks and traffic jams than world-changing energy breakthroughs. But that could be about to change.

New Jersey things.
Heatmap Illustration/Getty Images, Wikimedia Commons, Thea Energy

Why New Jersey? I’ll admit, that’s what I was wondering as my S.U.V. took a Sopranos-adjacent route from midtown Manhattan to an industrial park in Kearny, the Newark suburb bounded by the Passaic River to the west and a landfill to the east, where the holy grail of energy may soon be forged.

I was visiting the nuclear fusion company Thea Energy, which is in the process of designing a stellarator, a kind of torqued donut — French crullers were mentioned several times by Thea cofounder and chief executive Brian Berzin during my time there — that, with the help of 450 magnets and about 15 megawatts of power, could one day hold plasma in place, thereby creating the conditions for the same nuclear reaction that powers the stars to happen here on Earth.

The New Jersey facility was, to my eyes, part tech startup and part laboratory, with rows of desks in an open office and then, once the requisite eye-safety equipment was applied, a laboratory and small-scale manufacturing site.

There were workers winding high-temperature superconductor tape using what can only be described as an oversized VCR-like device named “Zeus” (Greek mythology is the company’s primary motif; the eventual fusion device will be called “Eos,” the goddess of dawn, while Thea is the goddess of light) to make the magnets that could one day make up the stellarator.

We walked past a precision cutting device known as a CNC machine for milling parts on site. Berzin was particularly proud of Thea’s ability to quickly iterate this part of the manufacturing process. A year ago, “when we wanted a new piece of stainless steel in that very specific configuration, we sent out engineering drawings to a third party — sometimes in the United States, sometimes abroad — for them to mill that piece of metal.”

That process “takes a couple of weeks, and then they send it back to you. Sometimes it’s not perfect — you have to get rid of a burr. The quality control is all over the place.” By milling on-site, Thea engineers can make parts and components faster and figure out more quickly what they actually need.

The last stop on the tour was the Canis, a kind of aluminum gougère held up by spindly legs that contained within it an array of nine magnets, with each magnet connected to 50 sensors that could dynamically control and adjust for any errors or misalignments in the magnetic fields. These mass-manufactured magnets could eventually allow the stellarator to be something more like a standard off-the-line product than a finnicky, boutique, one-of-a-kind science project that can only be installed and monitored by plasma physics PhDs.

“We can use very basic manufacturing technologies,” Berzin said. “Here we’re sitting in New Jersey right now. Things are built by local trade laborers, unionized laborers. As much as I love PhDs, power plants are not built by people that have PhDs from MIT or Harvard.”

The facility had a well-worn aura of frugality, a virtue rarely associated with fusion research, which is famous for international consortia taking decades and billions of dollars to come up with working devices, if they ever do. Last year, the team behind the ITER fusion reactor, whose history stretches back to 1985, announced that operation would be delayed until the mid-2030s, a nine-year setback that will likely tack on another €5 billion (around $5.8 billion) to the total cost of over €20 billion.

By contrast, Berzin told me, “when investors and stakeholders come to visit our labs, the one reaction that occurs frequently is, Wow, you’ve done all of this with only $20 million?

Thea’s primary competitors in the booming private fusion industry, which has attracted over $7 billion in private investment globally, can be found outside Boston, where Commonwealth Fusion Systems spun out of the Massachusetts Institute of Technology, or north of Seattle, where Sam Altman-backed Helion is located, well known centers of scientific research and technology businesses.

Some of these competitors are incredibly well funded, especially CFS, which has raised around $2 billion — a substantial portion of all money raised by fusion companies everywhere.

Thea, by contrast, has raised around $30 million all told, with $20 million coming in a Series A backed by Prelude Ventures, Lowercarbon Capital, and other venture investors.

Berzin attributed this cost efficiency in part to the company’s heavy use of software in design and operations, which is a “more scalable, more cost-efficient thing,” he told me. “We’ve been able to go very far with our Series A compared to our peers,” which he credits to a “pretty gritty mindset.”

And yet still I wondered: Why North Jersey, an area better known for turnpikes, swamps, and pharmaceutical companies? “New York, New Jersey, the greater New York City area, I think notoriously within the investor-VC-tech community, is seen as being behind the ball,” Berzin said.

“I'm really proud to be here in the tri-state area. You have some great industries, people move to New York City to be in the center of the universe for one of many fields, and that has been something we've been able to leverage. All these different skill-sets and engineering talent pools weren't necessarily in fusion before,” Berzin said. “Control systems, optimization, manufacturing — these people exist within the New York City area.”

Northern New Jersey itself is something of an energy crossroads. It lies between two centers of fusion research — the Princeton Plasma Physics Laboratory, where the stellarator was first dreamed up and from which Thea itself was spun out, and Columbia University, which has its own fusion and plasma physics research programs.

Northern New Jersey is also centrally located within PJM Interconnection, the United States’s largest electricity market. Northern New Jersey is also centrally located within PJM Interconnection, the United States’s largest electricity market. While there isn’t yet a site for Thea to actually install their system in a power plant, executives did point to brownfield sites such as a decommissioned coal plant in Jersey City, which already has interconnection with the grid.

Not for nothing, New Jersey has been a center for electricity innovation for just about as long as there’s been a commercial market for electricity. Thomas Edison’s Menlo Park lab was located about 20 miles south of Thea. The company’s co-founder David Gates is a winner of the Edison Patent Award for the stellarator work at the Princeton lab.

Plus, “I live in New York City,” Berzin added. “It’s the center of the universe.”

If you can make fusion happen here — or at least across the Hudson from here — you might be able to make it happen anywhere.

Blue

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

The Grinch of Offshore Wind

On Google’s energy glow up, transmission progress, and South American oil

Donald Trump.
Heatmap Illustration/Getty Images

Current conditions: Nearly two dozen states from the Rockies through the Midwest and Appalachians are forecast to experience temperatures up to 30 degrees above historical averages on Christmas Day • Parts of northern New York and New England could get up to a foot of snow in the coming days • Bethlehem, the West Bank city south of Jerusalem in which Christians believe Jesus was born, is preparing for a sunny, cloudless Christmas Day, with temperatures around 60 degrees Fahrenheit.

This is our last Heatmap AM of 2025, but we’ll see you all again in 2026!

THE TOP FIVE

1. Trump halts construction on all offshore wind projects

Just two weeks after a federal court overturned President Donald Trump’s Day One executive order banning new offshore wind permits, the administration announced a halt to all construction on seaward turbines. Secretary of the Interior Doug Burgum announced the move Monday morning on X: “Due to national security concerns identified by @DeptofWar, @Interior is PAUSING leases for 5 expensive, unreliable, heavily subsidized offshore wind farms!” As Heatmap’s Jael Holzman explained in her writeup, there are only five offshore wind projects currently under construction in U.S. waters: Vineyard Wind, Revolution Wind, Coastal Virginia Offshore Wind, Sunrise Wind, and Empire Wind. “The Department of War has come back conclusively that the issues related to these large offshore wind programs create radar interference, create genuine risk for the U.S., particularly related to where they are in proximity to our East Coast population centers,” Burgum told Fox Business host Maria Bartiromo.

Keep reading...Show less
Green
Energy

Google Is Cornering the Market on Energy Wonks

The hyperscaler is going big on human intelligence to help power its artificial intelligence.

The Google logo holding electricity.
Heatmap Illustration/Getty Images

Google is on an AI hiring spree — and not just for people who can design chips and build large language models. The tech giant wants people who can design energy systems, too.

Google has invested heavily of late in personnel for its electricity and infrastructure-related teams. Among its key hires is Tyler Norris, a former Duke University researcher and one of the most prominent proponents of electricity demand flexibility for data centers, who started in November as “head of market innovation” on the advanced energy team. The company also hired Doug Lewin, an energy consultant and one of the most respected voices in Texas energy policy, to lead “energy strategy and market design work in Texas,” according to a note he wrote on LinkedIn. Nathan Iyer, who worked on energy policy issues at RMI, has been a contractor for Google Clean Energy for about a year. (The company also announced Monday that it’s shelling out $4.5 billion to acquire clean energy developer Intersect.)

Keep reading...Show less
Yellow
Podcast

The Biggest Energy and Climate Stories of 2026

A lookahead with Heatmap’s own Emily Pontecorvo, Matthew Zeitlin, and Jillian Goodman.

Clean energy.
Heatmap Illustration/Getty Images

2025 has been a rough year for climate and energy news. But enough about that. Let’s start looking at 2026!

On this week’s episode of Shift Key, Rob is joined by some of Heatmap’s writers and editors to discuss our biggest stories and predictions for 2026 — what we’re tracking, what could surprise us, and what could happen next. We also discuss a recent op-ed in The New York Times arguing that Democrats should work more closely with the U.S. oil and gas industry. Today’s panel includes Heatmap’s founding staff writer Emily Pontecorvo, staff writer Matthew Zeitlin, and deputy editor Jillian Goodman.

Keep reading...Show less
Green