You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Ask any climate wonk what’s holding back clean energy in the U.S. and you’re likely to get the same answer — not enough power lines. But what if the problem isn’t the number of power lines, but rather the outdated metal wires they’re made of?
Restringing transmission lines with more advanced wires, a process known as “reconductoring,” has the potential to double the amount of electricity our existing transmission system can handle, for less than half the price of building new lines. That’s the main finding of a recently published working paper from researchers at the University of California, Berkeley, and Gridlab, an energy consulting firm.
There are a few reasons that something as boring and seemingly ubiquitous as power lines are so crucial to the energy transition. Electrifying our cars and homes will increase demand for electricity, and much of the system is already too congested to integrate new wind and solar power plants. Plus, there just aren’t enough lines that run from the sunniest, windiest places to the places where most people actually live.
To realize the emission reduction potential of the clean energy subsidies in the Inflation Reduction Act, we have to more than double the rate of transmission expansion, according to research from Princeton University’s Repeat Project. Clean energy projects already face major delays and are often hit with exorbitant bills to connect to the grid. A study from Lawrence Berkeley National Laboratory called “Queued Up” found that at the end of 2022, there were more than 10,000 power plant and energy storage projects waiting for permission to connect to the grid — enough to double electricity production in the country. Some 95% of them were zero-carbon resources.
The main problem is permitting. Establishing rights-of-way for new power lines requires extensive environmental review and invites vicious local opposition. People don’t want to look at more wires strung across the landscape. They worry the eyesore will decrease their property value, or that the construction will hurt local ecosystems. New power lines often take upwards of 10 years to plan, permit, and build.
But it’s possible to avoid this time-consuming process, at least in many cases, by simply reconductoring lines along existing rights-of-way. Most of our existing power lines have a steel core surrounded by strands of aluminum. Advanced conductors replace the steel with a lighter but stronger core made of a composite material, such as carbon fiber. This subtle shift in materials and design enables the line to operate at higher temperatures, with less sag, significantly increasing the amount of power it can carry.
Advanced conductors cost two to four times more than conventional power lines — but upgrading an existing line to use advanced conductors can be less than half what a new power line would cost because it eliminates much of the construction spending and fees from permitting for new rights-of-way, the Berkeley study found.
“The most compelling, exciting thing is that it only requires a maintenance permit,” Duncan Callaway, an associate professor of energy and resources at Berkeley and one of the authors said while presenting the research over Zoom last week.
The paper highlights a 2016 project in southeastern Texas. Due to rapid population growth in the area, the local utility, American Electric Power, was seeing higher demand for electricity at peak times than it was prepared for, leading to blackouts. It needed to come up with a solution, fast, and decided that reconductoring 240 miles of its transmission lines would take less time than permitting new ones. The project ended up finishing ahead of schedule and under budget, at a cost of $900,000 per mile. By comparison, the 3,600 miles of new lines built under Texas’ Competitive Renewable Energy Zone program, which were built to connect wind-rich areas to population centers, cost more than double, at an average of $1.9 million per mile.
Callaway and his co-authors also plugged their findings into a power system expansion model — basically a computer program that maps out the most cost-effective mix of technologies to meet regional electric power demand. They fed the model a scenario where the only option for transmission was to build new lines at their slow, historical rate, as well as a scenario where there was also an option to reconductor along existing rights-of-way. The second scenario resulted in nearly four times as much transmission capacity by 2035, enabling the country to achieve a more than 90% clean electric grid by that date.
There are cases where new power lines are needed — for example, to establish a new route to access a high-quality renewable resource, Emilia Chojkiewicz, another author of the study, told me in an email. But she said it nearly always makes sense to consider reconductoring given the potential to double capacity and do so much more quickly. “Unfortunately,” she added, “current transmission planning practices do not tend to incentivize or even consider reconductoring.”
This all seems so ridiculously easy that it begs the question: Why aren’t utilities already rushing to do it? During the webinar last week, Chojkiewicz and her co-authors said part of the problem is just a lack of awareness and comfort with the technology. But the bigger issue is that utilities are not incentivized to look for cheaper, more efficient solutions like reconductoring because they profit off capital spending.
To change this, they suggested that the Federal Energy Regulatory Commission, which oversees interstate transmission, and state public service commissions, which regulate utilities at the state level, mandate the consideration of reconductoring in transmission and resource planning processes, and to properly value the benefits that advanced conductors provide. The Department of Energy could also consider instituting a national conductor efficiency standard, so that all new wires installed, whether along existing rights-of-way or new routes, achieve a minimum level of performance.
Reconductoring isn’t the only no-brainer alternative to building new power lines. Another study from the clean energy think tank RMI published last week illustrates the opportunity with even cheaper tweaks called “grid enhancing technologies.” One option is to install sensors that collect data on wind speed, temperature, and other factors that affect power lines in real time, called dynamic line ratings. These sensors allow utilities to safely increase the amount of power transmitted when weather conditions permit it. There are also power flow controls that can redirect power away from congested lines so that it can be transmitted elsewhere rather than wasted.
RMI found that in the PJM interconnection — a section of the grid in the eastern U.S. that is so congested the grid operator has frozen new applications to connect to it — these grid enhancing technologies could open up more than 6 gigawatts of new capacity to wind, solar, and storage projects in just three years. For reference, in 2022, nearly 300 gigawatts-worth of energy projects were waiting for permission to connect in PJM at the end 2022.
The cost savings are not just theoretical. In 2018, the PJM grid operator determined that a wind farm expansion in Illinois was going to require $100 million of grid upgrades — including building new lines and reconductoring existing ones — over a timeline of about three years before it would be able to connect. The developer countered that the needed upgrades could be achieved through power flow controls, which could be installed for a cost of just $12 million in less than half the time. PJM approved the idea, and the project is currently underway.
Congress is still debating how to reform permitting processes. But while that’s still a necessary step, it’s becoming increasingly clear that there’s a host of other outside-the-box solutions that can be deployed more quickly, in the near term. The IRA may have convinced the environmental movement that building new stuff was worth it, but there are still a lot of cases where the smarter choice is to renovate.
Editor’s note: This story has been updated to correct the cost of adding power flow controls to the PJM interconnection.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Whichever way you cut it, this has been an absolute banner year for nuclear deals in the U.S. It doesn’t much matter the metric — the amount of venture funding flowing to nuclear startups, the number of announcements regarding planned reactor restarts and upgrades, gigawatts of new construction added to the pipeline — it’s basically all peaking. Stock prices are up across all major publicly traded nuclear companies this year, in some cases by over 100%.
“This year is by far the biggest year in terms of nuclear deals that has occurred, probably, since the 70s,” Adam Stein, the director of nuclear innovation at The Breakthrough Institute, told me. “It’s spanning the gamut from bringing a 40-year-old reactor back to things that have not even been proven scientifically yet.”
To name just a few announcements from this year: planning for a 4.4-gigawatt nuclear power complex is now underway in Texas; South Carolina’s state-owned utility is seeking buyers to restart construction on two partially built AP1000 reactors; New York governor Kathy Hochul is looking to build a new reactor in upstate New York; The Tennessee Valley Authority submitted a construction permit for a small modular reactor; Google signed a power purchase agreement with Commonwealth Fusion Systems; and another fusion company, Helion Energy, raised a whopping $425 million round of venture capital. On top of all that there’s the Palisades nuclear power plant in Michigan, which is targeted to restart by year’s end, bringing 800 megawatts of new nuclear power online.
Heading into the second Trump term, there were plenty of indications that the administration would support this technology with increasingly bipartisan appeal. So it wasn’t exactly a surprise that while the One Big Beautiful Bill eviscerated tax credits for solar and wind, it preserved them for both existing and new nuclear facilities. Now that this support is assured, Stein expects the nuclear announcements to keep rolling in. “We might have seen more deals earlier this year if there wasn’t uncertainty about what was going to happen with tax credits. But now that that’s resolved, I expect to hear more later this year,” he told me.
How much of this is, I asked him, is due to data centers and their seemingly insatiable demand for clean, firm power? “Most of it,” he said simply. By way of example, he pointed out how data center load growth has changed the outlooks for two small modular reactor companies in particular. “NuScale has been trying to find their first project for a long time now, after they had to cancel their [Utah Associated Municipal Power Systems] project. Kairos didn’t have a clear buyer for its first-of-a-kind, even though it was building two test reactors,” Stein explained. “Then all of a sudden, they all had additional deals in the works because of data center demand.”
Last year, Kairos inked a 500-megawatt deal with Google to meet the hyperscaler’s growing data center needs, while this year, Texas A&M selected the company — along with three others — to build a reactor at the university’s research and development campus. And while NuScale infamously canceled its first project in 2023 due to rising costs, this year it received approval from the Nuclear Regulatory Commission for a new and improved reactor design. Now the company’s CEO, John Hopkins, told Reuters that NuScale is in talks to deploy its tech with five unnamed “tier one hyperscalers.” Its stock is up more than 150% on the year.
That’s a big turnaround for a company that, less than two years ago, was widely considered a cautionary tale — and it’s not the only one in the industry with this type of comeback story. Right before NuScale’s project failed, another nuclear company, X-energy, announced that it would no longer go public due to “challenging market conditions” and “peer company trading performance.” But while X-energy still has yet to IPO, it appears to be doing just fine. In February, the company announced the close of a $700 million Series C follow-on round, coming on the heels of Amazon’s strategic investment last year.
“I think every company has their stories about how things are changing,” Seth Grae, CEO of the advanced nuclear fuel company Lightbridge, told me. Things have moved a lot faster, Grae said, since Trump released a series of executive orders aimed at accelerating nuclear energy deployment. “Just since May, we’ve received this highly enriched uranium [from the Department of Energy], made these fuel samples, got them qualified already at Idaho National Lab. We expect they’ll be in the reactor this year. Grae told me. “Things didn’t used to happen that fast in nuclear.”
Trump’s plans to fast track nuclear development have also raised serious concerns, however, as critics worry that acceleration could lead to laxer safety standards The executive orders call for, among other things, cutting staff at the Nuclear Regulatory Commission, just as the industry enters a period of intense activity. In June, the President fired one of the agency’s commissioners, Christopher Hanson, without cause. Another commissioner, Annie Caputo, resigned in July.
But right now, the nuclear industry is mostly basking in optimism. Grae credits the government’s strong support for the surge in nuclear stocks — Lightbridge’s own stock price has jumped 180% this year, while another nuclear fuel company, Centrus Energy, is up even more. The small modular reactor company Oklo is up 285% for the year, on the heels of last year’s 12-gigawatt non-binding deal with the data center company Switch — one of the largest corporate clean power agreements to date.
Last year’s slew of deals involving Oklo, X-energy, and Kairos show that the sector’s momentum had been building well before Trump took office. By 2023, the writing was already on the wall in terms of data center load growth, as grid planners began to predict a sharp rise in electricity demand after over a decade of stagnation. But when I asked Erik Funkhauser of the Good Energy Collective whether the prior two years compared with this one, he concurred with Stein. “Nope,” he told me. “We’re seeing capital infusion at a really, really high pace, as high of a pace as the company’s suppliers can keep up with on projects.”
Still, the party may not go on forever. “I see a potential for a Valley of Death,” Stein told me, similar to what many startups go through when they’re trying to raise later-stage funding rounds.
“If things don’t start to actually move forward with real progress, either getting licenses or building prototypes on time, then all of that investment will be pulled back.” That’s what the U.S. saw during the last so-called “nuclear renaissance” in the late 2000s, he explained, when a rash of large reactors were proposed with only two actually reaching completion.
These were the notorious Vogtle reactors 3 and 4 in Georgia, which finally came online in 2023 and 2024 respectively, running billions over budget and years behind schedule. In order for this latest round of nuclear enthusiasm to avoid the same fate, Stein told me it’s critical that leading projects demonstrate enough early success to maintain developer confidence in the economic and technical viability of new — and old — nuclear technologies.
That being said, the sector will inevitably contract. “Back when we saw this last scale-up, there were three designs that were really competing for attention, and now there are 75. So we’re going to see a lot of failures,” Stein said. The question for venture investors, he told me, is “how many failures of startups that you didn’t invest in are you willing to tolerate before you start to think the whole segment has trouble?”
The second main way this could all fall to pieces, he told me, is if “somebody tries to move too fast,” and that recklessness leads to “either a bankruptcy or an accident or something like that that will send ripples or shock waves through the whole sector.”
Indeed, a metaphorical or literal meltdown in the sector could put a quick halt to this year’s frenzied momentum. But within the next few years, as these announced projects begin to line up their licenses and come online — or fall apart— we’ll soon see whether this latest nuclear revival is a true turning point or just another bubble.
On the Senate’s climate whip, green cement deals, and a U.S. uranium revival.
Current conditions: Flash flooding strikes the Southeastern U.S. • Monsoon rains unleash landslides in southern China • A heat dome is bringing temperatures of up to 107 degrees Fahrenheit to France, Italy, and the Balkans.
An August 5 chart showing last month's record electricity demand peaks.EIA
The United States’ demand for electricity broke records twice last month. Air conditioners cranking on hot days, combined with surging demand from data centers, pushed the peak in the Lower 48 states to a high of 758,053 megawatts on July 28, between 6 p.m. and 7 p.m. EST, data from the U.S. Energy Information Administration’s Hourly Electric Grid Monitor shows. The following day, peak demand set another record, hitting 759,180 megawatts. That’s nearly 2% above the previous record set on July 15, 2024.
The EIA predicted demand to grow by more than 2% per year between 2025 and 2026. Forecasts are even higher in areas with large data centers and factories underway, such as Texas and northern Virginia. The milestone comes as the Trump administration cracks down on solar and wind energy, two of the fastest-growing and quicker-to-build sources of new generation. On Tuesday, The New York Times reported that the Environmental Protection Agency is moving to eliminate $7 billion in spending on grants for solar energy, though when Heatmap’s Emily Pontecorvo asked the agency, it said only that, “With the passage of the One Big Beautiful Bill, EPA is working to ensure Congressional intent is fully implemented in accordance with the law.”
Senator Brian Schatz, a Democrat from Hawaii, locked down enough votes on Tuesday to replace Illinois Senator Dick Durbin as the Democrats’ whip in the chamber. Durbin, who is retiring next year, has served in the Senate Democrats’ No. 2 position since 2005. In his endorsement on Tuesday, Senate Minority Leader Chuck Schumer of New York called Schatz “a close friend and one of my most valued allies.”
Schatz crusaded for the Inflation Reduction Act and told Heatmap he supported last year’s failed bipartisan permitting reform deal, even as progressive greens campaigned against its giveaways to fossil fuels. In a Shift Key podcast interview with my colleague Robinson Meyer and his co-host, Princeton professor Jesse Jenkins, in February, Schatz pitched a big tent for climate action. “We all have to hang together. It’s the American Clean Power Association. It’s the energy company that does both clean and fossil energy. It’s the transmission and distribution companies. It’s the manufacturers. It’s labor. It’s Wall Street. It’s K Street. Everyone has to hang together and say, not only is this good for business, but there’s something that is foundationally worse for business than any individual policy decision.”
Get Heatmap AM directly in your inbox every morning:
The Trump administration may be clawing back funding for cleaning up heavy industry, but Big Tech is still inking deals. On Monday, Amazon agreed to buy low-carbon cement from the startup Brimstone. Then on Tuesday, the data center developer STACK Infrastructure announced the completion of “a pilot pour” of green cement from rival startup Sublime. The moves highlight the growing demand for cleaner industrial materials amid increased scrutiny of the energy and pollution linked to server farms.
America’s uranium enrichment went out of business in the early 2000s after the Clinton-era megatons-to-megawatts program essentially ceded the industry to cheap Russian imports made from disassembled atomic weapons. Since banning imports from Russia last year, the U.S. has been ramping up funding for nuclear fuel again, especially as the industry looks to build new types of reactors that rely on fuel other than the low-enriched uranium that virtually all the country’s operating 94 commercial reactors use. On Monday, the Department of Energy announced its first pilot project for advanced nuclear fuels, giving the startup Standard Nuclear the first federal deal. On Tuesday, the agency signed a $1.5 billion deal to restore the so-called Atomic City on the 100-acre parcel of federal land at the former Paducah Gaseous Diffusion Plan in Kentucky.
The Trump administration gave permission to the National Weather Service to hire up to 450 meteorologists, hydrologists, and radar technicians after sweeping cuts from the Department of Government Efficiency, CNN’s Andrew Freedman reported. The agency, which was partly blamed for its warnings going unheeded ahead of the deadly Texas floods last month, also received an exemption from the federal hiring freeze.
The move came the same day as a federal judge blocked the administration from diverting billions of dollars in Federal Emergency Management Agency funding for disaster resilience and flood mitigation. The injunction warned FEMA against spending the money on anything else.
Beyond Meat is finally getting beyond meat. The company plans to shed the flesh reference in its name this week as it launches its new Beyond Ground product that promises more protein than ground beef. “With this launch,” Fast Company’s Clint Rainey reported, “Beyond Meat is becoming merely Beyond and turning its focus away from only mimicking animal proteins to letting plant-based proteins speak for themselves. The radical move is cultural, agricultural, and financial.”
Rob and Jesse talk through the proposed overturning of the EPA’s “endangerment finding” on greenhouse gases with Harvard Law School’s Jody Freeman.
The Trump administration has formally declared that carbon dioxide and other greenhouse gases are not dangerous pollutants. If the president gets his way, then the Environmental Protection Agency may soon surrender any ability to regulate heat-trapping pollution from cars and trucks, power plants, and factories — in ways that a future Democratic president potentially could not reverse.
On this week’s episode of Shift Key, we discuss whether Trump’s EPA gambit will work, the arguments that the administration is using, and what it could mean for the future of U.S. climate and energy policy. We’re joined by Jody Freeman, the Archibald Cox Professor of Law at Harvard and the director of Harvard’s environmental and energy law program. She was an architect of the Obama administration’s landmark deal with automakers to accept carbon dioxide regulations.
Shift Key is hosted by Jesse Jenkins, a professor of energy systems engineering at Princeton University, and Robinson Meyer, Heatmap’s executive editor.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, YouTube, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: I just want to make a related question, which is, you can actually say some of the sentences in the DOE report — you can believe tornadoes don’t show any influence from climate change and still believe heatwaves do, and still believe extreme rainfall events do. In fact, you could believe the cost of heat waves getting worse could justify the entire regulatory edifice.
Jody Freeman: What I love about you, Rob, right now, is you’re kind of incensed about little points that might individually sort of be right, maybe each one separately, but none of it adds up to even a chink in the armor. Right? And what’ll have to happen is the scientific community writ large, en masse, is going to have to come back and say, even if one or two or three of these sentences could possibly, plausibly be actually accurate, it does nothing to change the overwhelming —
Jesse Jenkins: It doesn’t matter.
Freeman: Right. What I think is happening is we’re all getting poked and distracted and tweaked into outrage over science, when in fact, the first argument they’re making is the one where they could actually attract some judges and justices to say, Oh wait, maybe you have a little more discretion here to set a threshold level. You know, Maybe it matters that you’re saying nothing we do here in the U.S. will make a difference in the end to global warming, and maybe that is a reason you don’t want to regulate. Hmm, maybe we’ll accept that reason. And that’s what we need, I think, to be more concerned about.
Jenkins: You’re saying, don’t get distracted by the fight over the climate science. That fight is very clear. It’s this legal argument that this isn’t an air pollutant because it’s not a local air pollutant, it mixes globally with all the other CO2, and we can’t, you know, each class of cars is a tiny contributor to that, and so we shouldn’t worry about it —
Freeman: And much of this is a replay, or a rehash of arguments that the George W. Bush administration lost in Massachusetts vs. EPA. So a lot of this is like, let’s take another run at the Supreme Court.
Mentioned:
The EPA Says Carbon Pollution Isn’t Dangerous. What Comes Next?
The EPA on its reconsideration of the endangerment finding
Jody’s story on the change: Trump’s EPA proposes to end the U.S. fight against climate change
Jesse’s upshift (and accompanying video); Rob’s sort of upshift.
This episode of Shift Key is sponsored by …
Accelerate your clean energy career with Yale’s online certificate programs. Gain real-world skills, build strong networks, and keep working while you learn. Explore the year-long Financing and Deploying Clean Energy program or the 5-month Clean and Equitable Energy Development program. Learn more here.
Join clean energy leaders at RE+ 25, September 8–11 in Las Vegas. Explore opportunities to meet rising energy demand with the latest in solar, storage, EVs, and more at North America’s largest energy event. Save 20% with code HEATMAP20 at re-plus.com.
Music for Shift Key is by Adam Kromelow.