You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

Ask any climate wonk what’s holding back clean energy in the U.S. and you’re likely to get the same answer — not enough power lines. But what if the problem isn’t the number of power lines, but rather the outdated metal wires they’re made of?
Restringing transmission lines with more advanced wires, a process known as “reconductoring,” has the potential to double the amount of electricity our existing transmission system can handle, for less than half the price of building new lines. That’s the main finding of a recently published working paper from researchers at the University of California, Berkeley, and Gridlab, an energy consulting firm.
There are a few reasons that something as boring and seemingly ubiquitous as power lines are so crucial to the energy transition. Electrifying our cars and homes will increase demand for electricity, and much of the system is already too congested to integrate new wind and solar power plants. Plus, there just aren’t enough lines that run from the sunniest, windiest places to the places where most people actually live.
To realize the emission reduction potential of the clean energy subsidies in the Inflation Reduction Act, we have to more than double the rate of transmission expansion, according to research from Princeton University’s Repeat Project. Clean energy projects already face major delays and are often hit with exorbitant bills to connect to the grid. A study from Lawrence Berkeley National Laboratory called “Queued Up” found that at the end of 2022, there were more than 10,000 power plant and energy storage projects waiting for permission to connect to the grid — enough to double electricity production in the country. Some 95% of them were zero-carbon resources.
The main problem is permitting. Establishing rights-of-way for new power lines requires extensive environmental review and invites vicious local opposition. People don’t want to look at more wires strung across the landscape. They worry the eyesore will decrease their property value, or that the construction will hurt local ecosystems. New power lines often take upwards of 10 years to plan, permit, and build.
But it’s possible to avoid this time-consuming process, at least in many cases, by simply reconductoring lines along existing rights-of-way. Most of our existing power lines have a steel core surrounded by strands of aluminum. Advanced conductors replace the steel with a lighter but stronger core made of a composite material, such as carbon fiber. This subtle shift in materials and design enables the line to operate at higher temperatures, with less sag, significantly increasing the amount of power it can carry.
Advanced conductors cost two to four times more than conventional power lines — but upgrading an existing line to use advanced conductors can be less than half what a new power line would cost because it eliminates much of the construction spending and fees from permitting for new rights-of-way, the Berkeley study found.
“The most compelling, exciting thing is that it only requires a maintenance permit,” Duncan Callaway, an associate professor of energy and resources at Berkeley and one of the authors said while presenting the research over Zoom last week.
The paper highlights a 2016 project in southeastern Texas. Due to rapid population growth in the area, the local utility, American Electric Power, was seeing higher demand for electricity at peak times than it was prepared for, leading to blackouts. It needed to come up with a solution, fast, and decided that reconductoring 240 miles of its transmission lines would take less time than permitting new ones. The project ended up finishing ahead of schedule and under budget, at a cost of $900,000 per mile. By comparison, the 3,600 miles of new lines built under Texas’ Competitive Renewable Energy Zone program, which were built to connect wind-rich areas to population centers, cost more than double, at an average of $1.9 million per mile.
Callaway and his co-authors also plugged their findings into a power system expansion model — basically a computer program that maps out the most cost-effective mix of technologies to meet regional electric power demand. They fed the model a scenario where the only option for transmission was to build new lines at their slow, historical rate, as well as a scenario where there was also an option to reconductor along existing rights-of-way. The second scenario resulted in nearly four times as much transmission capacity by 2035, enabling the country to achieve a more than 90% clean electric grid by that date.
There are cases where new power lines are needed — for example, to establish a new route to access a high-quality renewable resource, Emilia Chojkiewicz, another author of the study, told me in an email. But she said it nearly always makes sense to consider reconductoring given the potential to double capacity and do so much more quickly. “Unfortunately,” she added, “current transmission planning practices do not tend to incentivize or even consider reconductoring.”
This all seems so ridiculously easy that it begs the question: Why aren’t utilities already rushing to do it? During the webinar last week, Chojkiewicz and her co-authors said part of the problem is just a lack of awareness and comfort with the technology. But the bigger issue is that utilities are not incentivized to look for cheaper, more efficient solutions like reconductoring because they profit off capital spending.
To change this, they suggested that the Federal Energy Regulatory Commission, which oversees interstate transmission, and state public service commissions, which regulate utilities at the state level, mandate the consideration of reconductoring in transmission and resource planning processes, and to properly value the benefits that advanced conductors provide. The Department of Energy could also consider instituting a national conductor efficiency standard, so that all new wires installed, whether along existing rights-of-way or new routes, achieve a minimum level of performance.
Reconductoring isn’t the only no-brainer alternative to building new power lines. Another study from the clean energy think tank RMI published last week illustrates the opportunity with even cheaper tweaks called “grid enhancing technologies.” One option is to install sensors that collect data on wind speed, temperature, and other factors that affect power lines in real time, called dynamic line ratings. These sensors allow utilities to safely increase the amount of power transmitted when weather conditions permit it. There are also power flow controls that can redirect power away from congested lines so that it can be transmitted elsewhere rather than wasted.
RMI found that in the PJM interconnection — a section of the grid in the eastern U.S. that is so congested the grid operator has frozen new applications to connect to it — these grid enhancing technologies could open up more than 6 gigawatts of new capacity to wind, solar, and storage projects in just three years. For reference, in 2022, nearly 300 gigawatts-worth of energy projects were waiting for permission to connect in PJM at the end 2022.
The cost savings are not just theoretical. In 2018, the PJM grid operator determined that a wind farm expansion in Illinois was going to require $100 million of grid upgrades — including building new lines and reconductoring existing ones — over a timeline of about three years before it would be able to connect. The developer countered that the needed upgrades could be achieved through power flow controls, which could be installed for a cost of just $12 million in less than half the time. PJM approved the idea, and the project is currently underway.
Congress is still debating how to reform permitting processes. But while that’s still a necessary step, it’s becoming increasingly clear that there’s a host of other outside-the-box solutions that can be deployed more quickly, in the near term. The IRA may have convinced the environmental movement that building new stuff was worth it, but there are still a lot of cases where the smarter choice is to renovate.
Editor’s note: This story has been updated to correct the cost of adding power flow controls to the PJM interconnection.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Whether any of them will hold up in court is now the big question.
Environmental lawyers are in for years of déjà vu as the Trump administration relitigates questions that many believed were settled by the Supreme Court nearly 20 years ago.
On Thursday, Trump rescinded the “endangerment finding,” the Environmental Protection Agency’s 2009 determination that greenhouse gas emissions from vehicles threaten Americans’ public health and welfare and should be regulated. In the short term, the move repeals existing vehicle emissions standards and prevents future administrations from replacing them. In the longer term, what matters is whether any of the administration’s justifications hold up in court.
In its final rule, the EPA abandoned its attempt to back the move using a bespoke climate science report published by the Department of Energy last year. The report was created by a working group assembled in secret by the department and made up of five scientists who have a track record of pushing back on mainstream climate science. Not only was the report widely refuted by scientists, but the assembly of the working group itself broke federal law, a judge ruled in late January.
“The science is clear that climate change is creating a risk for the public and public health, and so I think it’s significant that they realized that it creates a legal risk if they were to try to assert otherwise,” Carrie Jenks, the executive director of Harvard’s Environmental and Energy Law Program, told me.
Instead, the EPA came up with three arguments to justify its decision, each of which will no doubt have to be defended in court. The agency claims that each of them can stand alone, but that they also reinforce each other. Whether that proves to be true, of course, has yet to be determined.
Here’s what they are:
Congress never specifically told the EPA to regulate greenhouse gas emissions. If it did, maybe we would have accomplished more on climate change by now.
What happened instead was that in 1999, a coalition of environmental and solar energy groups asked the EPA to regulate emissions from cars, arguing that greenhouse gases should be considered pollutants under the federal Clean Air Act. In 2007, in a case called Massachusetts v. EPA, the Supreme Court agreed with the second part. That led the EPA to consider whether these gases posed enough of a danger to public health to warrant regulation. In 2009, it concluded they did — that’s what’s known as the endangerment finding. After reaching that finding, the EPA went ahead and developed standards to limit emissions from vehicles. It later followed that up with rules for power plants and oil and gas operations.
Now Trump’s EPA is arguing that this three-step progression — categorizing greenhouse gases as pollutants under the Clean Air Act, making a scientific finding that they endanger public health, and setting regulations — was all wrong. Instead, the agency now believes, it’s necessary to consider all three at once.
Using the EPA’s logic, the argument comes out something like this: If we consider that U.S. cars are a small sliver of global emissions, and that limiting those emissions will not materially change the trajectory of global warming or the impacts of climate change on Americans, then we must conclude that Congress did not intend for greenhouse gases to be regulated when it enacted the Clean Air Act.
“They are trying to merge it all together and say, because we can’t do that last thing in a way that we think is reasonable, we can’t do the first thing,” Jenks said.
The agency is not explicitly asking for Massachusetts v. EPA to be overturned, Jenks said. But if its current argument wins in court, that would be the effective outcome, preventing future administrations from issuing greenhouse gas standards unless Congress passed a law explicitly telling it to do so. While it's rare for the Supreme Court to reverse course, none of the five justices who were in the majority on that case remain, and the makeup of the court is now far more conservative than in 2007.
The EPA also asserted that the “major questions doctrine,” a legal principle that says federal agencies cannot set policies of major economic and political significance without explicit direction from Congress, means the EPA cannot “decide the Nation’s policy response to global climate change concerns.”
The Supreme Court has used the major questions doctrine to overturn EPA’s regulations in the past, most notably in West Virginia v. EPA, which ruled that President Obama’s Clean Power Plan failed this constitutional test. But that case was not about EPA’s authority to regulate greenhouse gases, the court solely struck down the particular approach the EPA took to those regulations. Nevertheless, the EPA now argues that any climate regulation at all would be a violation.
The EPA’s final argument is about the “futility” of vehicle emissions standards. It echoes a portion of the first justification, arguing that the point alone is enough of a reason to revoke the endangerment finding absent any other reason.
The endangerment finding had “severed the consideration of endangerment from the consideration of contribution” of emissions, the agency wrote. The Clean Air Act “instructs the EPA to regulate in furtherance of public health and welfare, not to reduce emissions regardless [of] whether such reductions have any material health and welfare impact.”
Funnily enough, to reach this conclusion, the agency had to use climate models developed by past administrations, including the EPA’s Optimization Model for reducing Emissions of GHGs from Automobiles, as well as some developed by outside scientists, such as the Finite amplitude Impulse Response climate emulator model — though it did so begrudgingly.
The agency “recognizes that there is still significant dispute regarding climate science and modeling,” it wrote. “However, the EPA is utilizing the climate modeling provided within this section to help illustrate” that zero-ing out emissions from vehicles “would not materially address the health and welfare dangers attributed to global climate change concerns in the Endangerment Finding.”
I have yet to hear back from outside experts about the EPA’s modeling here, so I can’t say what assumptions the agency made to reach this conclusion or estimate how well it will hold up to scrutiny. We’ll be talking to more legal scholars and scientists in the coming days as they digest the rule and dig into which of these arguments — if any — has a chance to prevail.
The state is poised to join a chorus of states with BYO energy policies.
With the backlash to data center development growing around the country, some states are launching a preemptive strike to shield residents from higher energy costs and environmental impacts.
A bill wending through the Washington State legislature would require data centers to pick up the tab for all of the costs associated with connecting them to the grid. It echoes laws passed in Oregon and Minnesota last year, and others currently under consideration in Florida, Georgia, Illinois, and Delaware.
Several of these bills, including Washington’s, also seek to protect state climate goals by ensuring that new or expanded data centers are powered by newly built, zero-emissions power plants. It’s a strategy that energy wonks have started referring to as BYONCE — bring your own new clean energy. Almost all of the bills also demand more transparency from data center companies about their energy and water use.
This list of state bills is by no means exhaustive. Governors in New York and Pennsylvania have declared their intent to enact similar policies this year. At least six states, including New York and Georgia, are also considering total moratoria on new data centers while regulators study the potential impacts of a computing boom.
“Potential” is a key word here. One of the main risks lawmakers are trying to circumvent is that utilities might pour money into new infrastructure to power data centers that are never built, built somewhere else, or don’t need as much energy as they initially thought.
“There’s a risk that there’s a lot of speculation driving the AI data center boom,” Emily Moore, the senior director of the climate and energy program at the nonprofit Sightline Institute, told me. “If the load growth projections — which really are projections at this point — don’t materialize, ratepayers could be stuck holding the bag for grid investments that utilities have made to serve data centers.”
Washington State, despite being in the top 10 states for data center concentration, has not exactly been a hotbed of opposition to the industry. According to Heatmap Pro data, there are no moratoria or restrictive ordinances on data centers in the state. Rural communities in Eastern Washington have also benefited enormously from hosting data centers from the earlier tech boom, using the tax revenue to fund schools, hospitals, municipal buildings, and recreation centers.
Still, concern has started to bubble up. A ProPublica report in 2024 suggested that data centers were slowing the state’s clean energy progress. It also described a contentious 2023 utility commission meeting in Grant County, which has the highest concentration of data centers in the state, where farmers and tech workers fought over rising energy costs.
But as with elsewhere in the country, it’s the eye-popping growth forecasts that are scaring people the most. Last year, the Northwest Power and Conservation Council, a group that oversees electricity planning in the region, estimated that data centers and chip fabricators could add somewhere between 1,400 megawatts and 4,500 megawatts of demand by 2030. That’s similar to saying that between one and four cities the size of Seattle will hook up to the region’s grid in the next four years.
In the face of such intimidating demand growth, Washington Governor Bob Ferguson convened a Data Center Working Group last year — made up of state officials as well as advisors from electric utilities, environmental groups, labor, and industry — to help the state formulate a game plan. After meeting for six months, the group published a report in December finding that among other things, the data center boom will challenge the state’s efforts to decarbonize its energy systems.
A supplemental opinion provided by the Washington Department of Ecology also noted that multiple data center developers had submitted proposals to use fossil fuels as their main source of power. While the state’s clean energy law requires all electricity to be carbon neutral by 2030, “very few data center developers are proposing to use clean energy to meet their energy needs over the next five years,” the department said.
The report’s top three recommendations — to maintain the integrity of Washington’s climate laws, strengthen ratepayer protections, and incentivize load flexibility and best practices for energy efficiency — are all incorporated into the bill now under discussion in the legislature. The full list was not approved by unanimous vote, however, and many of the dissenting voices are now opposing the data center bill in the legislature or asking for significant revisions.
Dan Diorio, the vice president of state policy for the Data Center Coalition, an industry trade group, warned lawmakers during a hearing on the bill that it would “significantly impact the competitiveness and viability of the Washington market,” putting jobs and tax revenue at risk. He argued that the bill inappropriately singles out data centers, when arguably any new facility with significant energy demand poses the same risks and infrastructure challenges. The onshoring of manufacturing facilities, hydrogen production, and the electrification of vehicles, buildings, and industry will have similar impacts. “It does not create a long-term durable policy to protect ratepayers from current and future sources of load growth,” he said.
Another point of contention is whether a top-down mandate from the state is necessary when utility regulators already have the authority to address the risks of growing energy demand through the ratemaking process.
Indeed, regulators all over the country are already working on it. The Smart Electric Power Alliance, a clean energy research and education nonprofit, has been tracking the special rate structures and rules that U.S. utilities have established for data centers, cryptocurrency mining facilities, and other customers with high-density energy needs, many of which are designed to protect other ratepayers from cost shifts. Its database, which was last updated in November, says that 36 such agreements have been approved by state utility regulators, mostly in the past three years, and that another 29 are proposed or pending.
Diario of the Data Center Coalition cited this trend as evidence that the Washington bill was unnecessary. “The data center industry has been an active party in many of those proceedings,” he told me in an email, and “remains committed to paying its full cost of service for the energy it uses.” (The Data Center Coalition opposed a recent utility decision in Ohio that will require data centers to pay for a minimum of 85% of their monthly energy forecast, even if they end up using less.)
One of the data center industry’s favorite counterarguments against the fear of rising electricity is that new large loads actually exert downward pressure on rates by spreading out fixed costs. Jeff Dennis, who is the executive director of the Electricity Customer Alliance and has worked for both the Department of Energy and the Federal Energy Regulatory Commission, told me this is something he worries about — that these potential benefits could be forfeited if data centers are isolated into their own ratemaking class. But, he said, we’re only in “version 1.5 or 2.0” when it comes to special rate structures for big energy users, known as large load tariffs.
“I think they’re going to continue to evolve as everybody learns more about how to integrate large loads, and as the large load customers themselves evolve in their operations,” he said.
The Washington bill passed the Appropriations Committee on Monday and now heads to the Rules Committee for review. A companion bill is moving through the state senate.
Plus more of the week’s top fights in renewable energy.
1. Kent County, Michigan — Yet another Michigan municipality has banned data centers — for the second time in just a few months.
2. Pima County, Arizona — Opposition groups submitted twice the required number of signatures in a petition to put a rezoning proposal for a $3.6 billion data center project on the ballot in November.
3. Columbus, Ohio — A bill proposed in the Ohio Senate could severely restrict renewables throughout the state.
4. Converse and Niobrara Counties, Wyoming — The Wyoming State Board of Land Commissioners last week rescinded the leases for two wind projects in Wyoming after a district court judge ruled against their approval in December.