You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Is international cooperation or technological development the answer to an apocalyptic threat?
Christopher Nolan’s film Oppenheimer is about the great military contest of the Second World War, but only in the background. It’s really about a clash of visions for a postwar world defined by the physicist J. Robert Oppenheimer’s work at Los Alamos and beyond. The great power unleashed by the bombs at Hiroshima and Nagasaki could be dwarfed by what knowledge of nuclear physics could produce in the coming years, risking a war more horrifying than the one that had just concluded.
Oppenheimer, and many of his fellow atomic scientists, would spend much of the postwar period arguing for international cooperation, scientific openness, and nuclear restriction. But there was another cadre of scientists, exemplified by a former colleague turned rival, Edward Teller, that sought to answer the threat of nuclear annihilation with new technology — including even bigger bombs.
As the urgency of the nuclear question declined with the end of the Cold War, the scientific community took up a new threat to global civilization: climate change. While the conflict mapped out in Oppenheimer was over nuclear weapons, the clash of visions, which ended up burying Oppenheimer and elevating Teller, also maps out to the great debate over global warming: Should we reach international agreements to cooperatively reduce carbon emissions or should we throw our — and specifically America’s — great resources into a headlong rush of technological development? Should we massively overhaul our energy system or make the sun a little less bright?
Oppenheimer’s dream of international cooperation to prevent a nuclear arms race was born even before the Manhattan Project culminated with the Trinity test. Oppenheimer and Danish physicist Niels Bohr “believed that an agreement between the wartime allies based upon the sharing of information, including the existence of the Manhattan Project, could prevent the surfacing of a nuclear-armed world,” writes Marco Borghi in a Wilson Institute working paper.
Oppenheimer even suggested that the Soviets be informed of the Manhattan Project’s efforts and, according to Martin Sherwin and Kai Bird’s American Prometheus, had “assumed that such forthright discussions were taking place at that very moment” at the conference in Potsdam where, Oppenheimer “was later appalled to learn” that Harry Truman had only vaguely mentioned the bomb to Joseph Stalin, scotching the first opportunity for international nuclear cooperation.
Oppenheimer continued to take up the cause of international cooperation, working as the lead advisor for Dean Acheson and David Lilienthal on their 1946 nuclear control proposal, which would never get accepted by the United Nations and, namely, the Soviet Union after it was amended by Truman’s appointed U.N. representative Bernard Baruch to be more favorable to the United States.
In view of the next 50 years of nuclear history — further proliferation, the development of thermonuclear weapons that could be mounted on missiles that were likely impossible to shoot down — the proposals Oppenheimer developed seem utopian: The U.N. would "bring under its complete control world supplies of uranium and thorium," including all mining, and would control all nuclear reactors. This scheme would also make the construction of new weapons impossible, lest other nations build their own.
By the end of 1946, the Baruch proposal had died along with any prospect of international control of nuclear power, all the while the Soviets were working intensely to disrupt America’s nuclear monopoly — with the help of information ferried out of Los Alamos — by successfully testing a weapon before the end of the decade.
With the failure of international arms control and the beginning of the arms race, Oppenheimer’s vision of a post-Trinity world would come to shambles. For Teller, however, it was a great opportunity.
While Oppenheimer planned to stave off nuclear annihilation through international cooperation, Teller was trying to build a bigger deterrent.
Since the early stages of the Manhattan Project, Teller had been dreaming of a fusion weapon many times more powerful than the first atomic bombs, what was then called the “Super.” When the atomic bomb was completed, he would again push for the creation of a thermonuclear bomb, but the efforts stalled thanks to technical and theoretical issues with Teller’s proposed design.
Nolan captures Teller’s early comprehension of just how powerful nuclear weapons can be. In a scene that’s pulled straight from accounts of the Trinity blast, most of the scientists who view the test are either in bunkers wearing welding goggles or following instructions to lie down, facing away from the blast. Not so for Teller. He lathers sunscreen on his face, straps on a pair of dark goggles, and views the explosion straight on, even pursing his lips as the explosion lights up the desert night brighter than the sun.
And it was that power — the sun’s — that Teller wanted to harness in pursuit of his “Super,” where a bomb’s power would be derived from fusing together hydrogen atoms, creating helium — and a great deal of energy. It would even use a fission bomb to help ignite the process.
Oppenheimer and several scientific luminaries, including Manhattan Project scientists Enrico Fermi and Isidor Rabi, opposed the bomb, issuing in their official report on their positions advising the Atomic Energy Commission in 1949 statements that the hydrogen bomb was infeasible, strategically useless, and potentially a weapon of “genocide.”
But by 1950, thanks in part to Teller and the advocacy of Lewis Strauss, a financier turned government official and the approximate villain of Nolan’s film, Harry Truman would sign off on a hydrogen bomb project, resulting in the 1952 “Ivy Mike” test where a bomb using a design from Teller and mathematician Stan Ulam would vaporize the Pacific Island Elugelab with a blast about 700 times more powerful than the one that destroyed Hiroshima.
The success of the project re-ignited doubts around Oppenheimer’s well-known left-wing political associations in the years before the war and, thanks to scheming by Strauss, he was denied a renewed security clearance.
While several Manhattan Project scientists testified on his behalf, Teller did not, saying, “I thoroughly disagreed with him in numerous issues and his actions frankly appeared to me confused and complicated.”
It was the end of Oppenheimer’s public career. The New Deal Democrat had been eclipsed by Teller, who would become the scientific avatar of the Reagan Republicans.
For the next few decades, Teller would stay close to politicians, the military, and the media, exercising a great deal of influence over arms policy for several decades from the Lawrence Livermore National Laboratory, which he helped found, and his academic perch at the University of California.
He pooh-poohed the dangers of radiation, supported the building of more and bigger bombs that could be delivered by longer and longer range missiles, and opposed prohibitions on testing. When Dwight Eisenhower was considering a negotiated nuclear test ban, Teller faced off against future Nobel laureate and Manhattan Project alumnus Hans Bethe over whether nuclear tests could be hidden from detection by conducting them underground in a massive hole; the eventual 1963 test ban treaty would exempt underground testing.
As the Cold War settled into a nuclear standoff with both the United States and the Soviet Union possessing enough missiles and nuclear weapons to wipe out the other, Teller didn’t look to treaties, limitations, and cooperation to solve the problem of nuclear brinksmanship, but instead to space: He wanted to neutralize the threat of a Soviet first strike using x-ray lasers from space powered by nuclear explosions (he was again opposed by Bethe and the x-ray lasers never came to fruition).
He also notoriously dreamed up Project Plowshare, the civilian nuclear project which would get close to nuking out a new harbor in Northern Alaska and actually did attempt to extract gas in New Mexico and Colorado using nuclear explosions.
Yet, in perhaps the strangest turn of all, Teller also became something of a key figure in the history of climate change research, both in his relatively early awareness of the problem and the conceptual gigantism he brought to proposing to solve it.
While publicly skeptical of climate change later in his life, Teller was starting to think about climate change, decades before James Hansen’s seminal 1988 Congressional testimony.
The researcher and climate litigator Benajmin Franta made the startling archival discovery that Teller had given a speech at an oil industry event in 1959 where he warned “energy resources will run short as we use more and more of the fossil fuels,” and, after explaining the greenhouse effect, he said that “it has been calculated that a temperature rise corresponding to a 10 percent increase in carbon dioxide will be sufficient to melt the icecap and submerge New York … I think that this chemical contamination is more serious than most people tend to believe.”
Teller was also engaged with issues around energy and other “peaceful” uses of nuclear power. In response to concerns about the dangers of nuclear reactors, he in the 1960s began advocating putting them underground, and by the early 1990s proposed running said underground nuclear reactors automatically in order to avoid the human error he blamed for the disasters at Chernobyl and Three Mile Island.
While Teller was always happy to find some collaborators to almost throw off an ingenious-if-extreme solution to a problem, there is a strain of “Tellerism,” both institutionally and conceptually, that persists to this day in climate science and energy policy.
Nuclear science and climate science had long been intertwined, Stanford historian Paul Edwards writes, including that the “earliest global climate models relied on numerical methods very similar to those developed by nuclear weapons designers for solving the fluid dynamics equations needed to analyze shock waves produced in nuclear explosions.”
Where Teller comes in is in the role that Lawrence Livermore played in both its energy research and climate modeling. “With the Cold War over and research on nuclear weapons in decline, the national laboratories faced a quandary: What would justify their continued existence?” Edwards writes. The answer in many cases would be climate change, due to these labs’ ample collection of computing power, “expertise in numerical modeling of fluid dynamics, and their skills in managing very large data sets.”
One of those labs was Livermore, the institution founded by Teller, a leading center of climate and energy modeling and research since the late 1980s. “[Teller] was very enthusiastic about weather control,” early climate modeler Cecil “Chuck” Leith told Edwards in an oral history.
The Department of Energy writ large, which inherited much of the responsibilities of the Atomic Energy Commission, is now one of the lead agencies on climate change policy and energy research.
Which brings us to fusion.
It was Teller’s Lawrence Livermore National Laboratory that earlier this year successfully got more power out of a controlled fusion reaction than it put in — and it was Energy Secretary Jennifer Granholm who announced it, calling it the “holy grail” of clean energy development.
Teller’s journey with fusion is familiar to its history: early cautious optimism followed by a realization that it would likely not be achieved soon. As early as 1958, he said in a speech that he had been discussing “controlled fusion” at Los Alamos and that “thermonuclear energy generation is possible,” although he admitted that “the problem is not quite easy” and by 1987 had given up on seeing it realized during his lifetime.
Still, what controlled fusion we do have at Livermore’s National Ignition Facility owes something to Teller and the technology he pioneered in the hydrogen bomb, according to physicist NJ Fisch.
While fusion is one infamous technological fix for the problem of clean and cheap energy production, Teller and the Livermore cadres were also a major influence on the development of solar geoengineering, the idea that global warming could be averted not by reducing the emissions of greenhouse gas into the atmosphere, but by making the sun less intense.
In a mildly trolling column for the Wall Street Journal in January 1998, Teller professed agnosticism on climate change (despite giving that speech to oil executives three decades prior) but proposed an alternative policy that would be “far less burdensome than even a system of market-allocated emissions permits”: solar geoengineering with “fine particles.”
The op-ed placed in the conservative pages of the Wall Street Journal was almost certainly an effort to oppose the recently signed Kyoto Protocol, but the ideas have persisted among thinkers and scientists whose engagement with environmental issues went far beyond their own opinion about Al Gore and by extension the environmental movement as a whole (Teller’s feelings about both were negative).
But his proposal would be familiar to the climate debates of today: particle emissions that would scatter sunlight and thus lower atmospheric temperatures. If climate change had to be addressed, Teller argued, “let us play to our uniquely American strengths in innovation and technology to offset any global warming by the least costly means possible.”
A paper he wrote with two colleagues that was an early call for spraying sulfates in the stratosphere also proposed “deploying electrically-conducting sheeting, either in the stratosphere or in low Earth orbit.” These were “literally diaphanous shattering screens,” that could scatter enough sunlight in order to reduce global warming — one calculation Teller made concludes that 46 million square miles, or about 1 percent of the surface area of the Earth, of these screens would be necessary.
The climate scientist and Livermore alumnus Ken Caldeira has attributed his own initial interest in solar geoengineering to Lowell Wood, a Livermore researcher and Teller protégé. While often seen as a centrist or even a right wing idea in order to avoid the more restrictionist policies on carbon emissions, solar geoengineering has sparked some interest on the left, including in socialist science fiction author Kim Stanley Robinson’s The Ministry for the Future, which envisions India unilaterally pumping sulfates into the atmosphere in response to a devastating heat wave.
The White House even quietly released a congressionally-mandated report on solar geoengineering earlier this spring, outlining avenues for further research.
While the more than 30 years since the creation of the Intergovernmental Panel on Climate Change and the beginnings of Kyoto Protocol have emphasized international cooperation on both science and policymaking through agreed upon goals in emissions reductions, the technological temptation is always present.
And here we can perhaps see that the split between the moralized scientists and their pleas for addressing the problems of the arms race through scientific openness and international cooperation and those of the hawkish technicians, who wanted to press the United States’ technical advantage in order to win the nuclear standoff and ultimately the Cold War through deterrence.
With the IPCC and the United Nations Climate Conference, through which emerged the Kyoto Protocol and the Paris Agreement, we see a version of what the postwar scientists wanted applied to the problem of climate change. Nations come together and agree on targets for controlling something that may benefit any one of them but risks global calamity. The process is informed by scientists working with substantial resources across national borders who play a major role in formulating and verifying the policy mechanisms used to achieve these goals.
But for almost as long as climate change has been an issue of international concern, the Tellerian path has been tempting. While Teller’s dreams of massive sun-scattering sheets, nuclear earth engineering, and automated underground reactors are unlikely to be realized soon, if at all, you can be sure there are scientists and engineers looking straight into the light. And they may one day drag us into it, whether we want to or not.
Editor’s note: An earlier version of this article misstated the name of a climate modeler. It’s been corrected. We regret the error.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
What happened this week in climate and energy policy, beyond the federal election results.
1. It’s the election, stupid – We don’t need to retread who won the presidential election this week (or what it means for the Inflation Reduction Act). But there were also big local control votes worth watching closely.
2. Michigan lawsuit watch – Michigan has a serious lawsuit brewing over its law taking some control of renewable energy siting decisions away from municipalities.
A conversation with Frank Wolak of the Fuel Cell and Hydrogen Energy Association.
We’re joined today by Frank Wolak, CEO of perhaps the most crucial D.C. trade group for all things hydrogen: the Fuel Cell and Hydrogen Energy Association. The morning after Election Day we chatted about whether Trump 2.0 will be as receptive as members of Congress have been to hydrogen and the IRA’s tax credit for producing the fuel. Let’s look inside his crystal ball, shall we?
Simply put, will president-elect Donald Trump keep the IRA’s 45V tax credit in place?
So a couple things there. First, the production tax credit still has to be finalized and what they do about the tax credits, if anything, is a function of whether the Biden administration issues final guidance.
If they issue final guidance, then what that guidance says will determine what kind of reaction the Trump administration may have, whether to adjust it or tweak it.
The second thing: I think the tax credits fit into a question of the IRA broadly and hydrogen specifically. The Trump administration is going to be looking at the entirety of the IRA. There’s the question of what pushback hydrogen has in this administration and if it’s viewed as valuable or important or secondary, tertiary to other things. And I think we’ve yet to see that in the form of any platform.
So Trump’s view on hydrogen is a mystery then – how will that uncertainty impact hydrogen projects in development today?
The uncertainty that has been experienced by this industry predates the election outcome. The long wait for guidance has definitely slowed down the amount of investment. They’ve put many things on hold. This is not a secret.
What I’ll say is, the ability to regroup and fulfill the expectations that this industry had two or three years ago is hugely dependent on the outcome of the tax credit.
What do you think we’ll see companies do in this information vacuum? Will we see them double down on supporting the credit or potentially get out of hydrogen since it’s an emerging, nascent technology?
The doubling down on the tax credit depends on what the guidance looks like.
If the guidance looks flexible, the question is: how do you take that flexibility and make sure the Trump administration continues it and sees it as valuable or vital?
If the tax credit becomes rigid and stays rigid in the Biden administration, you’ll have a two step process – to unwind the rigidity and then also encourage the Trump administration to see the merits. If the guidance stays as stated, the work is harder.
The degree to which industry continues to make investments and says, “hey, we’re all in,” is a function of how these tax credits emerged. Are they going to really keep fighting and to keep the momentum going, or are the [credits] so limited that companies go, “look this is going to be very very hard to overcome in the U.S. so we’re going to take our investment elsewhere.”
You think we might see companies dip out of the hydrogen space over the credit’s outcome?
Mature long term players who are multinationals … are remaining extremely positive. They may adjust the sequence of their investments but they’re in this because they’re in hydrogen and want to be in this market as much as possible.
But those who saw this as an opportunity to come in and take advantage of tax credits are having those reactions of, “Should I invest? Do I look [at it] positively?” And that’s probably natural.
On the looming climate summit, clean energy stocks, and Hurricane Rafael
Current conditions: A winter storm could bring up to 4 feet of snow to parts of Colorado and New Mexico • At least 89 people are still missing from extreme flooding in Spain • The Mountain Fire in Southern California has consumed 14,000 acres and is zero percent contained.
The world is still reeling from the results of this week’s U.S. presidential election, and everyone is trying to get some idea of what a second Trump term means for policy – both at home and abroad. Perhaps most immediately, Trump’s election is “set to cast a pall over the UN COP29 summit next week,” said the Financial Times. Already many world leaders and business executives have said they will not attend the climate talks in Azerbaijan, where countries will aim to set a new goal for climate finance. “The U.S., as the world’s richest country and key shareholder in international financial institutions, is viewed as crucial to that goal,” the FT added.
Trump has called climate change a hoax, vowed to once again remove the U.S. from the Paris Agreement, and promised to stop U.S. climate finance contributions. He has also promised to “drill, baby, drill.” Yesterday President Biden put new environmental limitations on an oil-and-gas lease sale in Alaska’s Arctic National Wildlife Refuge. The lease sale was originally required by law in 2017 by Trump himself, and Biden is trying to “narrow” the lease sale without breaking that law, according to The Washington Post. “The election results have made the threat to America's Arctic clear,” Kristen Miller, executive director of Alaska Wilderness League, toldReuters. “The fight to save the Arctic Refuge is back, and we are ready for the next four years.”
Another early effect of the decisive election result is that clean energy stocks are down. The iShares Global Clean Energy exchange traded fund, whose biggest holdings are the solar panel company First Solar and the Spanish utility and renewables developer Iberdola, is down about 6%. The iShares U.S. Energy ETF, meanwhile, whose largest holdings are Exxon and Chevron, is up over 3%. Some specific publicly traded clean energy stocks have sunk, especially residential solar companies like Sunrun, which is down about 30% compared to Tuesday. “That renewables companies are falling more than fossil energy companies are rising, however, indicates that the market is not expecting a Trump White House to do much to improve oil and gas profitability or production, which has actually increased in the Biden years thanks to the spikes in energy prices following the Russian invasion of Ukraine and continued exploitation of America’s oil and gas resources through hydraulic fracturing,” wrote Heatmap’s Matthew Zeitlin.
Hurricane Rafael swept through Cuba yesterday as a Category 3 storm, knocking out the power grid and leaving 10 million people without electricity. Widespread flooding is reported. The island was still recovering from last month’s Hurricane Oscar, which left at least six people dead. The electrical grid – run by oil-fired power plants – has collapsed several times over the last few weeks. Meanwhile, the U.S. Bureau of Safety and Environmental Enforcement said yesterday that about 17% of crude oil production and 7% of natural gas output in the Gulf of Mexico was shut down because of Rafael.
It is “virtually certain” that 2024 will be the warmest year on record, according to the European Copernicus Climate Change Service. In October, the global average surface air temperature was about 60 degrees Fahrenheit, or nearly 3 degrees Fahrenheit warmer than pre-industrial averages for that month. This year is also on track to be the first entire calendar year in which temperatures are more than 1.5 degrees Celsius above pre-industrial levels. “This marks a new milestone in global temperature records and should serve as a catalyst to raise ambition for the upcoming climate change conference,” said Copernicus deputy director Dr. Samantha Burgess.
C3S
The world is falling short of its goal to double the rate of energy efficiency improvements by 2030, the International Energy Agency said in its new Energy Efficiency 2024 report. Global primary energy intensity – which the IEA explained is a measure of efficiency – will improve by 1% this year, the same as last year. It needs to be increasing by 4% by the end of the decade to meet a goal set at last year’s COP. “Boosting energy efficiency is about getting more from everyday technologies and industrial processes for the same amount of energy input, and means more jobs, healthier cities and a range of other benefits,” the IEA said. “Improving the efficiency of buildings and vehicles, as well as in other areas, is central to clean energy transitions, since it simultaneously improves energy security, lowers energy bills for consumers and reduces greenhouse gas emissions.” The group called for more government action as well as investment in energy efficient technologies.
Deforestation in Brazil’s Amazon fell by 30.6% in the 12 months leading up to July, compared to a year earlier. It is now at the lowest levels since 2015.