You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Is international cooperation or technological development the answer to an apocalyptic threat?
Christopher Nolan’s film Oppenheimer is about the great military contest of the Second World War, but only in the background. It’s really about a clash of visions for a postwar world defined by the physicist J. Robert Oppenheimer’s work at Los Alamos and beyond. The great power unleashed by the bombs at Hiroshima and Nagasaki could be dwarfed by what knowledge of nuclear physics could produce in the coming years, risking a war more horrifying than the one that had just concluded.
Oppenheimer, and many of his fellow atomic scientists, would spend much of the postwar period arguing for international cooperation, scientific openness, and nuclear restriction. But there was another cadre of scientists, exemplified by a former colleague turned rival, Edward Teller, that sought to answer the threat of nuclear annihilation with new technology — including even bigger bombs.
As the urgency of the nuclear question declined with the end of the Cold War, the scientific community took up a new threat to global civilization: climate change. While the conflict mapped out in Oppenheimer was over nuclear weapons, the clash of visions, which ended up burying Oppenheimer and elevating Teller, also maps out to the great debate over global warming: Should we reach international agreements to cooperatively reduce carbon emissions or should we throw our — and specifically America’s — great resources into a headlong rush of technological development? Should we massively overhaul our energy system or make the sun a little less bright?
Oppenheimer’s dream of international cooperation to prevent a nuclear arms race was born even before the Manhattan Project culminated with the Trinity test. Oppenheimer and Danish physicist Niels Bohr “believed that an agreement between the wartime allies based upon the sharing of information, including the existence of the Manhattan Project, could prevent the surfacing of a nuclear-armed world,” writes Marco Borghi in a Wilson Institute working paper.
Oppenheimer even suggested that the Soviets be informed of the Manhattan Project’s efforts and, according to Martin Sherwin and Kai Bird’s American Prometheus, had “assumed that such forthright discussions were taking place at that very moment” at the conference in Potsdam where, Oppenheimer “was later appalled to learn” that Harry Truman had only vaguely mentioned the bomb to Joseph Stalin, scotching the first opportunity for international nuclear cooperation.
Oppenheimer continued to take up the cause of international cooperation, working as the lead advisor for Dean Acheson and David Lilienthal on their 1946 nuclear control proposal, which would never get accepted by the United Nations and, namely, the Soviet Union after it was amended by Truman’s appointed U.N. representative Bernard Baruch to be more favorable to the United States.
In view of the next 50 years of nuclear history — further proliferation, the development of thermonuclear weapons that could be mounted on missiles that were likely impossible to shoot down — the proposals Oppenheimer developed seem utopian: The U.N. would "bring under its complete control world supplies of uranium and thorium," including all mining, and would control all nuclear reactors. This scheme would also make the construction of new weapons impossible, lest other nations build their own.
By the end of 1946, the Baruch proposal had died along with any prospect of international control of nuclear power, all the while the Soviets were working intensely to disrupt America’s nuclear monopoly — with the help of information ferried out of Los Alamos — by successfully testing a weapon before the end of the decade.
With the failure of international arms control and the beginning of the arms race, Oppenheimer’s vision of a post-Trinity world would come to shambles. For Teller, however, it was a great opportunity.
While Oppenheimer planned to stave off nuclear annihilation through international cooperation, Teller was trying to build a bigger deterrent.
Since the early stages of the Manhattan Project, Teller had been dreaming of a fusion weapon many times more powerful than the first atomic bombs, what was then called the “Super.” When the atomic bomb was completed, he would again push for the creation of a thermonuclear bomb, but the efforts stalled thanks to technical and theoretical issues with Teller’s proposed design.
Nolan captures Teller’s early comprehension of just how powerful nuclear weapons can be. In a scene that’s pulled straight from accounts of the Trinity blast, most of the scientists who view the test are either in bunkers wearing welding goggles or following instructions to lie down, facing away from the blast. Not so for Teller. He lathers sunscreen on his face, straps on a pair of dark goggles, and views the explosion straight on, even pursing his lips as the explosion lights up the desert night brighter than the sun.
And it was that power — the sun’s — that Teller wanted to harness in pursuit of his “Super,” where a bomb’s power would be derived from fusing together hydrogen atoms, creating helium — and a great deal of energy. It would even use a fission bomb to help ignite the process.
Oppenheimer and several scientific luminaries, including Manhattan Project scientists Enrico Fermi and Isidor Rabi, opposed the bomb, issuing in their official report on their positions advising the Atomic Energy Commission in 1949 statements that the hydrogen bomb was infeasible, strategically useless, and potentially a weapon of “genocide.”
But by 1950, thanks in part to Teller and the advocacy of Lewis Strauss, a financier turned government official and the approximate villain of Nolan’s film, Harry Truman would sign off on a hydrogen bomb project, resulting in the 1952 “Ivy Mike” test where a bomb using a design from Teller and mathematician Stan Ulam would vaporize the Pacific Island Elugelab with a blast about 700 times more powerful than the one that destroyed Hiroshima.
The success of the project re-ignited doubts around Oppenheimer’s well-known left-wing political associations in the years before the war and, thanks to scheming by Strauss, he was denied a renewed security clearance.
While several Manhattan Project scientists testified on his behalf, Teller did not, saying, “I thoroughly disagreed with him in numerous issues and his actions frankly appeared to me confused and complicated.”
It was the end of Oppenheimer’s public career. The New Deal Democrat had been eclipsed by Teller, who would become the scientific avatar of the Reagan Republicans.
For the next few decades, Teller would stay close to politicians, the military, and the media, exercising a great deal of influence over arms policy for several decades from the Lawrence Livermore National Laboratory, which he helped found, and his academic perch at the University of California.
He pooh-poohed the dangers of radiation, supported the building of more and bigger bombs that could be delivered by longer and longer range missiles, and opposed prohibitions on testing. When Dwight Eisenhower was considering a negotiated nuclear test ban, Teller faced off against future Nobel laureate and Manhattan Project alumnus Hans Bethe over whether nuclear tests could be hidden from detection by conducting them underground in a massive hole; the eventual 1963 test ban treaty would exempt underground testing.
As the Cold War settled into a nuclear standoff with both the United States and the Soviet Union possessing enough missiles and nuclear weapons to wipe out the other, Teller didn’t look to treaties, limitations, and cooperation to solve the problem of nuclear brinksmanship, but instead to space: He wanted to neutralize the threat of a Soviet first strike using x-ray lasers from space powered by nuclear explosions (he was again opposed by Bethe and the x-ray lasers never came to fruition).
He also notoriously dreamed up Project Plowshare, the civilian nuclear project which would get close to nuking out a new harbor in Northern Alaska and actually did attempt to extract gas in New Mexico and Colorado using nuclear explosions.
Yet, in perhaps the strangest turn of all, Teller also became something of a key figure in the history of climate change research, both in his relatively early awareness of the problem and the conceptual gigantism he brought to proposing to solve it.
While publicly skeptical of climate change later in his life, Teller was starting to think about climate change, decades before James Hansen’s seminal 1988 Congressional testimony.
The researcher and climate litigator Benajmin Franta made the startling archival discovery that Teller had given a speech at an oil industry event in 1959 where he warned “energy resources will run short as we use more and more of the fossil fuels,” and, after explaining the greenhouse effect, he said that “it has been calculated that a temperature rise corresponding to a 10 percent increase in carbon dioxide will be sufficient to melt the icecap and submerge New York … I think that this chemical contamination is more serious than most people tend to believe.”
Teller was also engaged with issues around energy and other “peaceful” uses of nuclear power. In response to concerns about the dangers of nuclear reactors, he in the 1960s began advocating putting them underground, and by the early 1990s proposed running said underground nuclear reactors automatically in order to avoid the human error he blamed for the disasters at Chernobyl and Three Mile Island.
While Teller was always happy to find some collaborators to almost throw off an ingenious-if-extreme solution to a problem, there is a strain of “Tellerism,” both institutionally and conceptually, that persists to this day in climate science and energy policy.
Nuclear science and climate science had long been intertwined, Stanford historian Paul Edwards writes, including that the “earliest global climate models relied on numerical methods very similar to those developed by nuclear weapons designers for solving the fluid dynamics equations needed to analyze shock waves produced in nuclear explosions.”
Where Teller comes in is in the role that Lawrence Livermore played in both its energy research and climate modeling. “With the Cold War over and research on nuclear weapons in decline, the national laboratories faced a quandary: What would justify their continued existence?” Edwards writes. The answer in many cases would be climate change, due to these labs’ ample collection of computing power, “expertise in numerical modeling of fluid dynamics, and their skills in managing very large data sets.”
One of those labs was Livermore, the institution founded by Teller, a leading center of climate and energy modeling and research since the late 1980s. “[Teller] was very enthusiastic about weather control,” early climate modeler Cecil “Chuck” Leith told Edwards in an oral history.
The Department of Energy writ large, which inherited much of the responsibilities of the Atomic Energy Commission, is now one of the lead agencies on climate change policy and energy research.
Which brings us to fusion.
It was Teller’s Lawrence Livermore National Laboratory that earlier this year successfully got more power out of a controlled fusion reaction than it put in — and it was Energy Secretary Jennifer Granholm who announced it, calling it the “holy grail” of clean energy development.
Teller’s journey with fusion is familiar to its history: early cautious optimism followed by a realization that it would likely not be achieved soon. As early as 1958, he said in a speech that he had been discussing “controlled fusion” at Los Alamos and that “thermonuclear energy generation is possible,” although he admitted that “the problem is not quite easy” and by 1987 had given up on seeing it realized during his lifetime.
Still, what controlled fusion we do have at Livermore’s National Ignition Facility owes something to Teller and the technology he pioneered in the hydrogen bomb, according to physicist NJ Fisch.
While fusion is one infamous technological fix for the problem of clean and cheap energy production, Teller and the Livermore cadres were also a major influence on the development of solar geoengineering, the idea that global warming could be averted not by reducing the emissions of greenhouse gas into the atmosphere, but by making the sun less intense.
In a mildly trolling column for the Wall Street Journal in January 1998, Teller professed agnosticism on climate change (despite giving that speech to oil executives three decades prior) but proposed an alternative policy that would be “far less burdensome than even a system of market-allocated emissions permits”: solar geoengineering with “fine particles.”
The op-ed placed in the conservative pages of the Wall Street Journal was almost certainly an effort to oppose the recently signed Kyoto Protocol, but the ideas have persisted among thinkers and scientists whose engagement with environmental issues went far beyond their own opinion about Al Gore and by extension the environmental movement as a whole (Teller’s feelings about both were negative).
But his proposal would be familiar to the climate debates of today: particle emissions that would scatter sunlight and thus lower atmospheric temperatures. If climate change had to be addressed, Teller argued, “let us play to our uniquely American strengths in innovation and technology to offset any global warming by the least costly means possible.”
A paper he wrote with two colleagues that was an early call for spraying sulfates in the stratosphere also proposed “deploying electrically-conducting sheeting, either in the stratosphere or in low Earth orbit.” These were “literally diaphanous shattering screens,” that could scatter enough sunlight in order to reduce global warming — one calculation Teller made concludes that 46 million square miles, or about 1 percent of the surface area of the Earth, of these screens would be necessary.
The climate scientist and Livermore alumnus Ken Caldeira has attributed his own initial interest in solar geoengineering to Lowell Wood, a Livermore researcher and Teller protégé. While often seen as a centrist or even a right wing idea in order to avoid the more restrictionist policies on carbon emissions, solar geoengineering has sparked some interest on the left, including in socialist science fiction author Kim Stanley Robinson’s The Ministry for the Future, which envisions India unilaterally pumping sulfates into the atmosphere in response to a devastating heat wave.
The White House even quietly released a congressionally-mandated report on solar geoengineering earlier this spring, outlining avenues for further research.
While the more than 30 years since the creation of the Intergovernmental Panel on Climate Change and the beginnings of Kyoto Protocol have emphasized international cooperation on both science and policymaking through agreed upon goals in emissions reductions, the technological temptation is always present.
And here we can perhaps see that the split between the moralized scientists and their pleas for addressing the problems of the arms race through scientific openness and international cooperation and those of the hawkish technicians, who wanted to press the United States’ technical advantage in order to win the nuclear standoff and ultimately the Cold War through deterrence.
With the IPCC and the United Nations Climate Conference, through which emerged the Kyoto Protocol and the Paris Agreement, we see a version of what the postwar scientists wanted applied to the problem of climate change. Nations come together and agree on targets for controlling something that may benefit any one of them but risks global calamity. The process is informed by scientists working with substantial resources across national borders who play a major role in formulating and verifying the policy mechanisms used to achieve these goals.
But for almost as long as climate change has been an issue of international concern, the Tellerian path has been tempting. While Teller’s dreams of massive sun-scattering sheets, nuclear earth engineering, and automated underground reactors are unlikely to be realized soon, if at all, you can be sure there are scientists and engineers looking straight into the light. And they may one day drag us into it, whether we want to or not.
Editor’s note: An earlier version of this article misstated the name of a climate modeler. It’s been corrected. We regret the error.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
What he wants them to do is one thing. What they’ll actually do is far less certain.
Donald Trump believes that tariffs have almost magical power to bring prosperity; as he said last month, “To me, the world’s most beautiful word in the dictionary is tariffs. It’s my favorite word.” In case anyone doubted his sincerity, before Thanksgiving he announced his intention to impose 25% tariffs on everything coming from Canada and Mexico, and an additional 10% tariff on all Chinese goods.
This is just the beginning. If the trade war he launched in his first term was haphazard and accomplished very little except costing Americans money, in his second term he plans to go much further. And the effects of these on clean energy and climate change will be anything but straightforward.
The theory behind tariffs is that by raising the price of an imported good, they give a stronger footing in the market; eventually, the domestic producer may no longer need the tariff to be competitive. Imposing a tariff means we’ve decided that a particular industry is important enough that it needs this kind of support — or as some might call it, protection — even if it means higher prices for a while.
The problem with across-the-board tariffs of the kind Trump proposes is that they create higher prices even for goods that are not being produced domestically and probably never will be. If tariffs raise the price of a six-pack of tube socks at Target from $9.99 to $14.99, it won’t mean we’ll start making tube socks in America again. It just means you’ll pay more. The same is often true for domestic industries that use foreign parts in their manufacturing: If no one is producing those parts domestically, their costs will unavoidably rise.
The U.S. imported over $3 trillion worth of goods in 2023, and $426 billion from China alone, so Trump’s proposed tariffs would represent hundreds of billions of dollars of increased costs. That’s before we account for the inevitable retaliatory tariffs, which is what we saw in Trump’s first term: He imposed tariffs on China, which responded by choking off its imports of American agricultural goods. In the end, the revenue collected from Trump’s tariffs went almost entirely to bailing out farmers whose export income disappeared.
The past almost-four years under Joe Biden have seen a series of back-and-forth moves in which new tariffs were announced, other tariffs were increased, exemptions were removed and reinstated. For instance, this May Biden increased the tariff on Chinese electric vehicles to over 100% while adding tariffs on certain EV batteries. But some of the provisions didn’t take effect right away, and only certain products were affected, so the net economic impact was minimal. And there’s been nothing like an across-the-board tariff.
It’s reasonable to criticize Biden’s tariff policies related to climate. But his administration was trying to navigate a dilemma, serving two goals at once: reducing emissions and promoting the development of domestic clean energy technology. Those goals are not always in alignment, at least in the short run, which we can see in the conflict within the solar industry. Companies that sell and install solar equipment benefit from cheap Chinese imports and therefore oppose tariffs, while domestic manufacturers want the tariffs to continue so they can be more competitive. The administration has attempted to accommodate both interests with a combination of subsidies to manufacturers and tariffs on certain kinds of imports — with exemptions peppered here and there. It’s been a difficult balancing act.
Then there are electric vehicles. The world’s largest EV manufacturer is Chinese company BYD, but if you haven’t seen any of their cars on the road, it’s because existing tariffs make it virtually impossible to import Chinese EVs to the United States. That will continue to be the case under Trump, and it would have been the case if Kamala Harris had been elected.
On one hand, it’s important for America to have the strongest possible green industries to insulate us from future supply shocks and create as many jobs-of-the-future as possible. On the other hand, that isn’t necessarily the fastest route to emissions reductions. In a world where we’ve eliminated all tariffs on EVs, the U.S. market would be flooded with inexpensive, high-quality Chinese EVs. That would dramatically accelerate adoption, which would be good for the climate.
But that would also deal a crushing blow to the American car industry, which is why neither party will allow it. What may happen, though, is that Chinese car companies may build factories in Mexico, or even here in the U.S., just as many European and Japanese companies have, so that their cars wouldn’t be subject to tariffs. That will take time.
Of course, whatever happens will depend on Trump following through with his tariff promise. We’ve seen before how he declares victory even when he only does part of what he promised, which could happen here. Once he begins implementing his tariffs, his administration will be immediately besieged by a thousand industries demanding exemptions, carve-outs, and delays in the tariffs that affect them. Many will have powerful advocates — members of Congress, big donors, and large groups of constituents — behind them. It’s easy to imagine how “across-the-board” tariffs could, in practice, turn into Swiss cheese.
There’s no way to know yet which parts of the energy transition will be in the cheese, and which parts will be in the holes. The manufacturers can say that helping them will stick it to China; the installers may not get as friendly an audience with Trump and his team. And the EV tariffs certainly aren’t going anywhere.
There’s a great deal of uncertainty, but one thing is clear: This is a fight that will continue for the entirety of Trump’s term, and beyond.
Give the people what they want — big, family-friendly EVs.
The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.
I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.
The L.A. show is one the major events on the yearly circuit of car shows, where the car companies traditionally reveal new models for the media and show off their whole lineups of vehicles for the public. Given that California is the EV capital of America, carmakers like to talk up their electric models here.
Hyundai’s brand partner, Kia, debuted a GT performance version of its EV9, adding more horsepower and flashy racing touches to a giant family SUV. Jeep reminded everyone of its upcoming forays into full-size and premium electric SUVs in the form of the Recon and the Wagoneer S. VW trumpeted the ID.Buzz, the long-promised electrified take on the classic VW Microbus that has finally gone on sale in America. The VW is the quirkiest of the lot, but it’s a design we’ve known about since 2017, when the concept version was revealed.
Boring isn’t the worst thing in the world. It can be a sign of a maturing industry. At auto shows of old, long before this current EV revolution, car companies would bring exotic, sci-fi concept cars to dial up the intrigue compared to the bread-and-butter, conservatively styled vehicles that actually made them gobs of money. During the early EV years, electrics were the shiny thing to show off at the car show. Now, something of the old dynamic has come to the electric sector.
Acura and Chrysler brought wild concepts to Los Angeles that were meant to signify the direction of their EVs to come. But most of the EVs in production looked far more familiar. Beyond the new hulking models from Hyundai and Kia, much of what’s on offer includes long-standing models, but in EV (Chevy Equinox and Blazer) or plug-in hybrid (Jeep Grand Cherokee and Wrangler) configurations. One of the most “interesting” EVs on the show floor was the Cybertruck, which sat quietly in a barely-staffed display of Tesla vehicles. (Elon Musk reveals his projects at separate Tesla events, a strategy more carmakers have begun to steal as a way to avoid sharing the spotlight at a car show.)
The other reason boring isn’t bad: It’s what the people want. The majority of drivers don’t buy an exotic, fun vehicle. They buy a handsome, spacious car they can afford. That last part, of course, is where the problem kicks in.
We don’t yet know the price of the Ioniq 9, but it’s likely to be in the neighborhood of Kia’s three-row electric, the EV9, which starts in the mid-$50,000s and can rise steeply from there. Stellantis’ forthcoming push into the EV market will start with not only pricey premium Jeep SUVs, but also some fun, though relatively expensive, vehicles like the heralded Ramcharger extended-range EV truck and the Dodge Charger Daytona, an attempt to apply machismo-oozing, alpha-male muscle-car marketing to an electric vehicle.
You can see the rationale. It costs a lot to build a battery big enough to power a big EV, so they’re going to be priced higher. Helpfully for the car brands, Americans have proven they will pay a premium for size and power. That’s not to say we’re entering an era of nothing but bloated EV battleships. Models such as the overpowered electric Dodge Charger and Kia EV9 GT will reveal the appetite for performance EVs. Smaller models like the revived Chevy Bolt and Kia’s EV3, already on sale overseas, are coming to America, tax credit or not.
The question for the legacy car companies is where to go from here. It takes years to bring a vehicle from idea to production, so the models on offer today were conceived in a time when big federal support for EVs was in place to buoy the industry through its transition. Now, though, the automakers have some clear uncertainty about what to say.
Chevy, having revealed new electrics like the Equinox EV elsewhere, did not hold a media conference at the L.A. show. Ford, which is having a hellacious time losing money on its EVs, used its time to talk up combustion vehicles including a new version of the palatial Expedition, one of the oversized gas-guzzlers that defined the first SUV craze of the 1990s.
If it’s true that the death of federal subsidies will send EV sales into a slump, we may see messaging from Detroit and elsewhere that feels decidedly retro, with very profitable combustion front-and-center and the all-electric future suddenly less of a talking point. Whatever happens at the federal level, EVs aren’t going away. But as they become a core part of the car business, they are going to get less exciting.
Current conditions: Parts of southwest France that were freezing last week are now experiencing record high temperatures • Forecasters are monitoring a storm system that could become Australia’s first named tropical cyclone of this season • The Colorado Rockies could get several feet of snow today and tomorrow.
This year’s Atlantic hurricane season caused an estimated $500 billion in damage and economic losses, according to AccuWeather. “For perspective, this would equate to nearly 2% of the nation’s gross domestic product,” said AccuWeather Chief Meteorologist Jon Porter. The figure accounts for long-term economic impacts including job losses, medical costs, drops in tourism, and recovery expenses. “The combination of extremely warm water temperatures, a shift toward a La Niña pattern and favorable conditions for development created the perfect storm for what AccuWeather experts called ‘a supercharged hurricane season,’” said AccuWeather lead hurricane expert Alex DaSilva. “This was an exceptionally powerful and destructive year for hurricanes in America, despite an unusual and historic lull during the climatological peak of the season.”
AccuWeather
This year’s hurricane season produced 18 named storms and 11 hurricanes. Five hurricanes made landfall, two of which were major storms. According to NOAA, an “average” season produces 14 named storms, seven hurricanes, and three major hurricanes. The season comes to an end on November 30.
California Gov. Gavin Newsom announced yesterday that if President-elect Donald Trump scraps the $7,500 EV tax credit, California will consider reviving its Clean Vehicle Rebate Program. The CVRP ran from 2010 to 2023 and helped fund nearly 600,000 EV purchases by offering rebates that started at $5,000 and increased to $7,500. But the program as it is now would exclude Tesla’s vehicles, because it is aimed at encouraging market competition, and Tesla already has a large share of the California market. Tesla CEO Elon Musk, who has cozied up to Trump, called California’s potential exclusion of Tesla “insane,” though he has said he’s okay with Trump nixing the federal subsidies. Newsom would need to go through the State Legislature to revive the program.
President-elect Donald Trump said yesterday he would impose steep new tariffs on all goods imported from China, Canada, and Mexico on day one of his presidency in a bid to stop “drugs” and “illegal aliens” from entering the United States. Specifically, Trump threatened Canada and Mexico each with a 25% tariff, and China with a 10% hike on existing levies. Such moves against three key U.S. trade partners would have major ramifications across many sectors, including the auto industry. Many car companies import vehicles and parts from plants in Mexico. The Canadian government responded with a statement reminding everyone that “Canada is essential to U.S. domestic energy supply, and last year 60% of U.S. crude oil imports originated in Canada.” Tariffs would be paid by U.S. companies buying the imported goods, and those costs would likely trickle down to consumers.
Amazon workers across the world plan to begin striking and protesting on Black Friday “to demand justice, fairness, and accountability” from the online retail giant. The protests are organized by the UNI Global Union’s Make Amazon Pay Campaign, which calls for better working conditions for employees and a commitment to “real environmental sustainability.” Workers in more than 20 countries including the U.S. are expected to join the protests, which will continue through Cyber Monday. Amazon’s carbon emissions last year totalled 68.8 million metric tons. That’s about 3% below 2022 levels, but more than 30% above 2019 levels.
Researchers from MIT have developed an AI tool called the “Earth Intelligence Engine” that can simulate realistic satellite images to show people what an area would look like if flooded by extreme weather. “Visualizing the potential impacts of a hurricane on people’s homes before it hits can help residents prepare and decide whether to evacuate,” wrote Jennifer Chu at MIT News. The team found that AI alone tended to “hallucinate,” generating images of flooding in areas that aren’t actually susceptible to a deluge. But when combined with a science-backed flood model, the tool became more accurate. “One of the biggest challenges is encouraging people to evacuate when they are at risk,” said MIT’s Björn Lütjens, who led the research. “Maybe this could be another visualization to help increase that readiness.” The tool is still in development and is available online. Here is an image it generated of flooding in Texas:
Maxar Open Data Program via Gupta et al., CVPR Workshop Proceedings. Lütjens et al., IEEE TGRS
A new installation at the Centre Pompidou in Paris lets visitors listen to the sounds of endangered and extinct animals – along with the voice of the artist behind the piece, the one and only Björk.