You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Everything you need to know — including one big (potential) drawback.

The humble water heater, like your fridge or septic tank, is the type of home technology that you only notice if and when it breaks. For most homeowners, that’s every 13 years. But if you’re on a mission to decarbonize your life, you might want to rethink your current set-up, and perhaps consider a makeover. Per the Department of Energy, water heating accounts for roughly 18% of the average household’s energy use, making it the second largest energy expense in any home.
Back in April, the DOE released new residential water heater standards that it says will save American households approximately $7.6 billion per year on their energy bills “while significantly cutting energy waste and harmful carbon pollution.” The standards will also, in effect, phase out electric resistance water heaters, which currently account for half the U.S. market, in favor of more energy-efficient heat pump water heaters by 2029. If any of that confuses you, read on. We’re breaking down everything you need to know about this oft-forgotten, basement-dwelling home technology, from the taxonomy of water heater types to tax credit and rebate tips to product recommendations.
Andy Meyer is a senior program manager at Efficiency Maine, an independent agency that implements energy efficiency programs in the state. His team is responsible for providing resources on heat pump water heaters to Maine residents, who buy one out of every 10 purchased in the U.S.
Ben Foster is vice president of operations at Barnett Plumbing & Water Heaters, a leading heat pump water heater contractor in California. He’s also developed loaner water heater programs supported by TECH Clean California, and notes that most contractors don’t have access to loaner programs:
Joseph Wachunas is a senior project manager at the New Buildings Institute, a nonprofit working to reduce emissions and deliver climate solutions through the built environment. At NBI, he heads up the Advanced Water Heating Initiative, which aims to decarbonize water heating through heat pump water heaters.
“Heat pump water heaters are simple to install — any plumber or handy person can do it — but plumbers may not be familiar with them. So if you talk with a plumber who has concerns, consider calling another plumber,” Meyer told me. “Again, Mainers have installed over 70,000 in the last 12 years. They are no longer new.”
A heat pump water heater is made up of a compressor, storage tank, condenser, evaporator coil, fan, backup heating elements, and refrigerant. The compressor, located in the upper compartment of the water heater, uses refrigerant to heat the water in the storage tank (via the condenser, which acts as a heat exchanger). The evaporator coil and fan work to change refrigerant from liquid back to gas after the water has been heated. The backup electric heating elements kick in only in periods of high demand to ensure consistent hot water supply.
A common misconception about heat pumps in general is that they don’t work in colder climates. This is not at all the case — half of electric water heaters in Maine, for instance, are now heat pumps. As long as they are installed indoors and in an area where pipes won’t freeze (typically, a basement), heat pump water heaters work throughout the year in all climates, according to Meyer and Wachunas. The rule of thumb, per the DOE, is to install your heat pump water heater in locations that remain in the 40 degree to 90 degree Fahrenheit range year-round.
Per the DOE, replacing your standard electric water heater with a heat pump water heater can save you up to 10% on your electricity bill, reducing your water heating energy consumption and costs by up to 70%.
The number one mistake homeowners make when it comes to their water heaters is waiting until they’re broken to replace them. This severely limits your options for new water heaters — as Foster notes, no one “wants to go days without hot water, let alone weeks,” and it can take weeks or even months to fit your home for a heat pump water heater. (We’ll get into why a bit later.)
“A lot of contractors, if you want a heat pump and you have a leaking water heater that needs to be replaced today, they're just going to convince you to go with gas,” Foster said.
Some contractors have loaner water heater programs, so you can temporarily use a gas heater in an emergency situation, but these programs are few and far between. If you’ve had your water heater for 10 years or more — even if it’s working just fine — it might be time to think about replacing it. If you do, you’ll need to consider a few things about your home and lifestyle, especially if you’re considering a heat pump water heater:
Heat pump water heaters require a significant amount of space. Per Pacific Northwest National Laboratory, heat pump water heaters can require more than 6 feet of height clearance to account for their air filters, as well as a 3-foot diameter space to provide clearance for the drain pan and other connections. Additionally, the heat pump water heater should be positioned so the exhaust outlet is at least 8 inches away from a wall, door, or ceiling.
Also, since heat pump water heaters work by drawing heat from the surrounding air, they require 700 cubic feet of unenclosed space surrounding the water heater location. While it is possible to install a heat pump water heater in a location with insufficient air volume (for instance, by installing the water heater with a door equipped with top and bottom grills), this would require extra work from your contractor. Taking all these measurements into account, this basically means that a heat pump water heater requires a 10-foot by 9-foot room with an 8-foot-tall ceiling.
Heat pump water heaters also require monthly and yearly service, Meyer told me. You should change the water filter every two to six months, and clear the condensate lines to ensure your unit doesn’t get clogged with mold or bacteria. Additionally, if your unit is a hybrid, you’ll have to keep an eye on its anode rod, which can become corroded over time and lead to heating issues. You’ll have to flush your heat pump water heater annually to avoid corrosion.
If you’re going to DIY it, understanding your household’s water needs is key to sizing and installing a new heat pump water heater. First, determine your house’s peak hour demand (the maximum amount of water your house uses in one hour per day) using this worksheet from the DOE. You can then use that number (measured in gallons) to determine what size heat water heater to buy — look at the heater’s first hour rating, a.k.a. the amount of hot water the heater can supply per hour, starting with a tank full of hot water. You’ll want your heater’s first hour rating to be equal to (or ideally, higher than) your peak hour demand.
Though you should use the worksheet to determine your unique peak hour demand, a general rule is that households of one to two people should use a 50-gallon water heater, while households of three or more people should use a 65- to 80-gallon tank. The average family uses 50 gallons of hot water per day, Wachunas explained. “So even if you have lots of showers in the morning, your heat pump in two to four hours will heat that water back up and you have plenty of extra supply.”
If you’re between two sizes of heat pump water heaters, always upsize, Foster said. This ensures that the heat pump is the primary source of heat, as opposed to the much less efficient backup electric mechanisms. In other words, it’s far more efficient (and less expensive!) for a larger heat pump water heater to heat a few extra gallons of water using the heat pump than it is for a smaller heat pump water heater to have to use its electric elements to keep up with excess demand.
Since many heat pump water heaters have certain voltage requirements, you may have to upgrade your electrical panel for 240-volt hardwired service. The cost and time involved in having your service upgraded can vary and depends on whether the power lines coming into your house are above ground. If they’re underground, Foster explained, a contractor will have to excavate and run new cables, which can take over a year. The best way to determine if you’ll need to upgrade your service is to have a trusted contractor do an assessment on your home. (This is also why it’s essential to plan in advance.)
Basements are always the best places for heat pump water heaters, regardless of climate. Other common locations for installation include garages, interior rooms, and rooms outside the thermal envelope, like attached sheds and utility rooms. The garage does not have to be insulated if outdoor temperatures are usually above 50°F, but if temperatures dip below freezing and the garage is uninsulated, it’d be best to consider another location. Interior rooms, like laundry or IT rooms, are a great choice because a heat pump water heater can utilize any waste heat generated by the equipment in the room. Finally, rooms outside the thermal envelope, like attached sheds, can be even more efficient than interior spaces in hot or warm climates because of the excess hot air.
Feeling ready to go shopping? Here’s everything you need to know about the buying and installation process.
This plug-in model caused quite a stir when it came out two years ago, and for good reason. Its low voltage allows it to be plugged into a standard outlet, making it a great fit for smaller homes with fewer residents, or anyone in need of a quick fix. (This is also a relatively foolproof choice for DIYers because of the quick and easy installation process.) For those wanting a model with a bit more flexibility but still an easy install, there’s the A.O. Smith Signature 900 Plug-in Hybrid, which is more expensive but has the added benefit of back-up electric resistance elements that help with higher hot water demand. Alternatively, you can go for the 120-Volt Rheem ProTerra Plug-in Water Heater with HydroBoost, which utilizes a mixing valve for maximum hot water output.
If app functionality is especially important to you, Rheem’s ProTerra line might be particularly appealing. The EcoNet app allows users to monitor the hot water heater from their phone, with status updates on potential leaks as well as compressor health, hot water availability and the unit’s set water temperature.
Another solid choice for larger families, for roughly the same price, is A.O. Smith’s Signature 900 80-Gal. For further durability, consider Bradford White’s Aerotherm Series water heaters, which can only be purchased through a qualified contractor, but are frequently praised for their resilience and anti-microbial technology.
Split-system heat pump water heaters are the answer for truly huge houses, where the heat pump itself is outside while the storage tank remains inside. “You can chain together as many heat pump units as you want with as many storage tanks as you want,” Foster said. “So you can create as big a system as you want.” While split-system heat pump water heaters are much less widely-available in the U.S. than they are in Asia and Europe, you can purchase this one online. SANCO is also shipping a new fifth generation unit soon, Quit Carbon advises, which may prove more cost-effective and will qualify for more rebates in California.
The quietest HPWH on the market, at 45 decibels, is made by A.O. Smith, according to Foster. It’s available in 50, 65, and 80 gallon sizes, so it can accommodate a variety of household types. Another quiet option is LG’s Inverter Heat Pump Water Heater, though LG is much newer to the heat pump water heater game than Rheem and A.O. Smith, so it may be more difficult to find qualified contractors.
Three more expert contractors I spoke with — Nate Adams, a longtime HVAC insulation and sealing contractor in West Virginia who specializes in electrification retrofits for homeowners; John Semmelhack, an HVAC consultant and the owner of Think Little, a building science consulting firm specializing in mechanical system design for passive house and net-zero energy homes; and Tim Portman, the owner of Portman Mechanical, specializing in electrification, heating and cooling, and home performance — had concerns about heat pump water heater installations.
Adams said heaters he’s installed have had a 50% failure rate, while Portman and Semmelhack cite a 60% failure rate. These issues have seemingly cropped up after 2018 and are almost entirely occurring with A.O. Smith and Rheem’s fifth generation of water heater models; older generations performed and continue to perform much better. “All my installs from 2014-2018 are still running to my knowledge,” says Adams. “Which is a big part of my frustration— we had this figured out already.”
The specific causes of these failures vary, spanning from tanks bursting to heat pumps losing charge, according to Adams. Semmelhack and Portman, meanwhile, pointed mainly to refrigerant leaks and compressor issues. (A.O. Smith and Rheem did not respond to requests for comment.) “All of the failures are happening inside the first year of operation,” noted Semmelhack. “So it's happening pretty quick, which makes us think that it's a factory problem and not an environmental problem inside the household.”
Semmelhack and Portman are hopeful about Cala’s new heat pump water heaters, which use an AI-powered control system to forecast hot water demand and heat the water in the tank accordingly with a heat pump. They’re aiming to start shipping those units in 2025, and you can preorder and learn more here.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The administration has already lost once in court wielding the same argument against Revolution Wind.
The Trump administration says it has halted all construction on offshore wind projects, citing “national security concerns.”
Interior Secretary Doug Burgum announced the move Monday morning on X: “Due to national security concerns identified by @DeptofWar, @Interior is PAUSING leases for 5 expensive, unreliable, heavily subsidized offshore wind farms!”
There are only five offshore wind projects currently under construction in U.S. waters: Vineyard Wind, Revolution Wind, Coastal Virginia Offshore Wind, Sunrise Wind, and Empire Wind. Burgum confirmed to Fox Business that these were the five projects whose leases have been targeted for termination, and that notices were being sent to the project developers today to halt work.
“The Department of War has come back conclusively that the issues related to these large offshore wind programs create radar interference, create genuine risk for the U.S., particularly related to where they are in proximity to our East Coast population centers,” Burgum told the network’s Maria Bartiromo.
David Schoetz, a spokesperson for Empire Wind's developer Equinor, told me the company is “aware of the stop work order announced by the Department of Interior,” and that the company is “evaluating the order and seeking further information from the federal government.” Schoetz added that we should ”expect more to come” from the company.
This action takes a kernel of truth — that offshore wind can cause interference with radar communication — and blows it up well beyond its apparent implications. Interior has cited reports from the military they claim are classified, so we can’t say what fresh findings forced defense officials to undermine many years of work to ensure that offshore wind development does not impede security or the readiness of U.S. armed forces.
The Trump administration has already lost once in court with a national security argument, when it tried to halt work on Revolution Wind citing these same concerns. The government’s case fell apart after project developer Orsted presented clear evidence that the government had already considered radar issues and found no reason to oppose the project. The timing here is also eyebrow-raising, as the Army Corps of Engineers — a subagency within the military — approved continued construction on Vineyard Wind just three days ago.
It’s also important to remember where this anti-offshore wind strategy came from. In January, I broke news that a coalition of activists fighting against offshore wind had submitted a blueprint to Trump officials laying out potential ways to stop projects, including those already under construction. Among these was a plan to cancel leases by citing national security concerns.
In a press release, the American Clean Power Association took the Trump administration to task for “taking more electricity off the grid while telling thousands of American workers to leave the job site.”
“The Trump Administration’s decision to stop construction of five major energy projects demonstrates that they either don’t understand the affordability crises facing millions of Americans or simply don't care,” the group said. “On the first day of this Administration, the President announced an energy emergency. Over the last year, they worked to create one with electricity prices rising faster under President Trump than any President in recent history."
What comes next will be legal, political and highly dramatic. In the immediate term, it’s likely that after the previous Revolution victory, companies will take the Trump administration to court seeking preliminary injunctions as soon as complaints can be drawn up. Democrats in Congress are almost certainly going to take this action into permitting reform talks, too, after squabbling over offshore wind nearly derailed a House bill revising the National Environmental Policy Act last week.
Heatmap has reached out to all of the offshore wind developers affected, and we’ll update this story if and when we hear back from them.
Editor’s note: This story has been updated to reflect comment from Equinor and ACP.
On Redwood Materials’ milestone, states welcome geothermal, and Indian nuclear
Current conditions: Powerful winds of up to 50 miles per hour are putting the Front Range states from Wyoming to Colorado at high risk of wildfire • Temperatures are set to feel like 101 degrees Fahrenheit in Santa Fe in northern Argentina • Benin is bracing for flood flooding as thunderstorms deluge the West African nation.

New York Governor Kathy Hochul inked a partnership agreement with Ontario Premier Doug Ford on Friday to work together on establishing supply chains and best practices for deploying next-generation nuclear technology. Unlike many other states whose formal pronouncements about nuclear power are limited to as-yet-unbuilt small modular reactors, the document promised to establish “a framework for collaboration on the development of advanced nuclear technologies, including large-scale nuclear” and SMRs. Ontario’s government-owned utility just broke ground on what could be the continent’s first SMR, a 300-megawatt reactor with a traditional, water-cooled design at the Darlington nuclear plant. New York, meanwhile, has vowed to build at least 1 gigawatt of new nuclear power in the state through its government-owned New York Power Authority. Heatmap’s Matthew Zeitlin wrote about the similarities between the two state-controlled utilities back when New York announced its plans. “This first-of-its-kind agreement represents a bold step forward in our relationship and New York’s pursuit of a clean energy future,” Hochul said in a press release. “By partnering with Ontario Power Generation and its extensive nuclear experience, New York is positioning itself at the forefront of advanced nuclear technology deployment, ensuring we have safe, reliable, affordable, and carbon-free energy that will help power the jobs of tomorrow.”
Hochul is on something of a roll. She also repealed a rule that’s been on the books for nearly 140 years that provided free hookups to the gas system for new customers in the state. The so-called 100-foot-rule is a reference to how much pipe the state would subsidize. The out-of-pocket cost for builders to link to the local gas network will likely be thousands of dollars, putting the alternative of using electric heat and cooking appliances on a level playing field. “It’s simply unfair, especially when so many people are struggling right now, to expect existing utility ratepayers to foot the bill for a gas hookup at a brand new house that is not their own,” Hochul said in a statement. “I have made affordability a top priority and doing away with this 40-year-old subsidy that has outlived its purpose will help with that.”
Redwood Materials, the battery recycling startup led by Tesla cofounder J.B. Straubel, has entered into commercial production at its South Carolina facility. The first phase of the $3.5 billion plant “has brought a system online that’s capable of recovering 20,000 metric tons of critical minerals annually, which isn’t full capacity,” Sawyer Merritt, a Tesla investor, posted on X. “Redwood’s goal is to keep these resources here; recovered, refined, and redeployed for America’s advantage,” the company wrote in a blog post on its website. “This strategy turns yesterday’s imports into tomorrow’s strategic stockpile, making the U.S. stronger, more competitive, and less vulnerable to supply chains controlled by China and other foreign adversaries.”
A 13-state alliance at the National Association of State Energy Officials launched a new accelerator program Friday that’s meant to “rapidly expand geothermal power development.” The effort, led by state energy offices in Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia, “will work to establish statewide geothermal power goals and to advance policies and programs that reduce project costs, address regulatory barriers, and speed the deployment of reliable, firm, flexible power to the grid.” Statements from governors of red and blue states highlighted the energy source’s bipartisan appeal. California Governor Gavin Newsom, a Democrat, called geothermal a key tool to “confront the climate crisis.” Idaho’s GOP Governor Brad Little, meanwhile, said geothermal power “strengthens communities, supports economic growth, and keeps our grid resilient.” If you want to review why geothermal is making a comeback, read this piece by Matthew.
Sign up to receive Heatmap AM in your inbox every morning:
Yet another pipeline is getting the greenlight. Last week, the Federal Energy Regulatory Commission approved plans for Mountain Valley’s Southgate pipeline, clearing the way for construction. The move to shorten the pipeline’s length from 75 miles down to 31 miles, while increasing the diameter of the project to 30 inches from between 16 and 23 inches, hinged on whether FERC deemed the gas conduit necessary. On Thursday, E&E News reported, FERC said the developers had demonstrated a need for the pipeline stretching from the existing Mountain Valley pipeline into North Carolina.
Last week, I told you about a bill proposed in India’s parliament to reform the country’s civil liability law and open the nuclear industry to foreign companies. In the 2010s, India passed a law designed to avoid another disaster like the 1984 Bhopal chemical leak that killed thousands but largely gave the subsidiary of the Dow Chemical Corporation that was responsible for the accident a pass on payouts to victims. As a result, virtually no foreign nuclear companies wanted to operate in India, lest an accident result in astronomical legal expenses in the country. (The one exception was Russia’s state-owned Rosatom.) In a bid to attract Western reactor companies, Indian lawmakers in both houses of parliament voted to repeal the liability provisions, NucNet reported.
The critically endangered Lesser Antillean iguana has made a stunning recovery on the tiny, uninhabited islet of Prickly Pear East near Anguilla. A population of roughly 10 breeding-aged lizards ballooned to 500 in the past five years. “Prickly Pear East has become a beacon of hope for these gorgeous lizards — and proves that when we give native wildlife the chance, they know what to do,” Jenny Daltry, Caribbean Alliance Director of nature charities Fauna & Flora and Re:wild, told Euronews.
The fourth-generation gas-cooled reactor company ZettaJoule is setting up shop at an unnamed university.
The appeal of next-generation nuclear technology is simple. Unlike the vast majority of existing reactors that use water, so-called fourth-generation units use coolants such as molten salt, liquid metal, or gases that can withstand intense heat such as helium. That allows the machines to reach and maintain the high temperatures necessary to decarbonize industrial processes, which currently only fossil fuels are able to reach.
But the execution requirements of these advanced reactors are complex, making skepticism easy to understand. While the U.S., Germany, and other countries experimented with fourth-generation reactors in earlier decades, there is only one commercial unit in operation today. That’s in China, arguably the leader in advanced nuclear, which hooked up a demonstration model of a high-temperature gas-cooled reactor to its grid two years ago, and just approved building another project in September.
Then there’s Japan, which has been operating its own high-temperature gas-cooled reactor for 27 years at a government research site in Ibaraki Prefecture, about 90 minutes north of Tokyo by train. Unlike China’s design, it’s not a commercial power reactor. Also unlike China’s design, it’s coming to America.
Heatmap has learned that ZettaJoule, an American-Japanese startup led by engineers who worked on that reactor, is now coming out of stealth and laying plans to build its first plant in Texas.
For months, the company has quietly staffed up its team of American and Japanese executives, including a former U.S. Nuclear Regulatory Commission official and a high-ranking ex-administrator from the industrial giant Mitsubishi. It’s now preparing to decamp from its initial home base in Rockville, Maryland, to the Lone Star State as it prepares to announce its debut project at an as-yet-unnamed university in Texas.
“We haven’t built a nuclear reactor in many, many decades, so you have only a handful of people who experienced the full cycle from design to operations,” Mitsuo Shimofuji, ZettaJoule’s chief executive, told me. “We need to complete this before they retire.”
That’s where the company sees its advantage over rivals in the race to build the West’s first commercial high-temperature gas reactor, such as Amazon-backed X-energy or Canada’s StarCore nuclear. ZettaJoule’s chief nuclear office, Kazuhiko Kunitomi, oversaw the construction of Japan’s research reactor in the 1990s. He’s considered Japan’s leading expert in high-temperature gas reactors.
“Our chief nuclear officer and some of our engineers are the only people in the Western world who have experience of the whole cycle from design to construction to operation of a high temperature gas reactor,” Shimofuji said.
Like X-energy’s reactor, ZettaJoule’s design is a small modular reactor. With a capacity of 30 megawatts of thermal output and 12 megawatts of electricity, the ZettaJoule reactor qualifies as a microreactor, a subcategory of SMR that includes anything 20 megawatts of electricity or less. Both companies’ reactors will also run on TRISO, a special kind of enriched uranium with cladding on each pellet that makes the fuel safer and more efficient at higher temperatures.
While X-energy’s debut project that Amazon is financing in Washington State is a nearly 1-gigawatt power station made up of at least a dozen of the American startup’s 80-megawatt reactors, ZettaJoule isn’t looking to generate electricity.
The first new reactor in Texas will be a research reactor, but the company’s focus is on producing heat. The reactor already working in Japan, which produces heat, demonstrates that the design can reach 950 degrees Celsius, roughly 25% higher than the operating temperature of China’s reactor.
The potential for use in industrial applications has begun to attract corporate partners. In a letter sent Monday to Ted Garrish, the U.S. assistant secretary of energy in charge of nuclear power — a copy of which I obtained — the U.S. subsidiary of the Saudi Arabian oil goliath Aramco urged the Trump administration to support ZettaJoule, and said that it would “consider their application to our operations” as the technology matures. ZettaJoule is in talks with at least two other multinational corporations.
The first new reactor ZettaJoule builds won’t be identical to the unit in Japan, Shimofuji said.
“We are going to modernize this reactor together with the Japanese and U.S. engineering partners,” he said. “The research reactor is robust and solid, but it’s over-engineered. What we want to do is use the safety basis but to make it more economic and competitive.”
Once ZettaJoule proves its ability to build and operate a new unit in Texas, the company will start exporting the technology back to Japan. The microreactor will be its first product line.
“But in the future, we can scale up to 20 times bigger,” Shimofuji said. “We can do 600 megawatts thermal and 300 megawatts electric.”
Another benefit ZettaJoule can tap into is the sweeping deal President Donald Trump brokered with Japanese Prime Minister Sanae Takaichi in October, which included hundreds of billions of dollars for new reactors of varying sizes, including the large-scale Westinghouse AP1000. That included financing to build GE Vernova Hitachi Nuclear Energy’s 300-megawatt BWRX-300, one of the West’s leading third-generation SMRs, which uses a traditional water-cooled design.
Unlike that unit, however, ZettaJoule’s micro-reactor is not a first-of-a-kind technology, said Chris Gadomski, the lead nuclear analyst at the consultancy BloombergNEF.
“It’s operated in Japan for a long, long time,” he told me. “So that second-of-a-kind is an attractive feature. Some of these companies have never operated a reactor. This one has done that.”
A similar dynamic almost played out with large-scale reactors more than two decades ago. In the late 1990s, Japanese developers built four of GE and Hitachi’s ABWR reactor, a large-scale unit with some of the key safety features that make the AP1000 stand out compared to its first- and second-generation predecessors. In the mid 2000s, the U.S. certified the design and planned to build a pair in South Texas. But the project never materialized, and America instead put its resources into Westinghouse’s design.
But the market is different today. Electricity demand is surging in the near term from data centers and in the long term from electrification of cars and industry. The need to curb fossil fuel consumption in the face of worsening climate change is more widely accepted than ever. And China’s growing dominance over nuclear energy has rattled officials from Tokyo to Washington.
“We need to deploy this as soon as possible to not lose the experienced people in Japan and the U.S.,” Shimofuji said. “In two or three years time, we will get a construction permit ideally. We are targeting the early 2030s.”
If every company publicly holding itself to that timeline is successful, the nuclear industry will be a crowded field. But as history shows, those with the experience to actually take a reactor from paper to concrete may have an advantage.