You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Everything you need to know — including one big (potential) drawback.

The humble water heater, like your fridge or septic tank, is the type of home technology that you only notice if and when it breaks. For most homeowners, that’s every 13 years. But if you’re on a mission to decarbonize your life, you might want to rethink your current set-up, and perhaps consider a makeover. Per the Department of Energy, water heating accounts for roughly 18% of the average household’s energy use, making it the second largest energy expense in any home.
Back in April, the DOE released new residential water heater standards that it says will save American households approximately $7.6 billion per year on their energy bills “while significantly cutting energy waste and harmful carbon pollution.” The standards will also, in effect, phase out electric resistance water heaters, which currently account for half the U.S. market, in favor of more energy-efficient heat pump water heaters by 2029. If any of that confuses you, read on. We’re breaking down everything you need to know about this oft-forgotten, basement-dwelling home technology, from the taxonomy of water heater types to tax credit and rebate tips to product recommendations.
Andy Meyer is a senior program manager at Efficiency Maine, an independent agency that implements energy efficiency programs in the state. His team is responsible for providing resources on heat pump water heaters to Maine residents, who buy one out of every 10 purchased in the U.S.
Ben Foster is vice president of operations at Barnett Plumbing & Water Heaters, a leading heat pump water heater contractor in California. He’s also developed loaner water heater programs supported by TECH Clean California, and notes that most contractors don’t have access to loaner programs:
Joseph Wachunas is a senior project manager at the New Buildings Institute, a nonprofit working to reduce emissions and deliver climate solutions through the built environment. At NBI, he heads up the Advanced Water Heating Initiative, which aims to decarbonize water heating through heat pump water heaters.
“Heat pump water heaters are simple to install — any plumber or handy person can do it — but plumbers may not be familiar with them. So if you talk with a plumber who has concerns, consider calling another plumber,” Meyer told me. “Again, Mainers have installed over 70,000 in the last 12 years. They are no longer new.”
A heat pump water heater is made up of a compressor, storage tank, condenser, evaporator coil, fan, backup heating elements, and refrigerant. The compressor, located in the upper compartment of the water heater, uses refrigerant to heat the water in the storage tank (via the condenser, which acts as a heat exchanger). The evaporator coil and fan work to change refrigerant from liquid back to gas after the water has been heated. The backup electric heating elements kick in only in periods of high demand to ensure consistent hot water supply.
A common misconception about heat pumps in general is that they don’t work in colder climates. This is not at all the case — half of electric water heaters in Maine, for instance, are now heat pumps. As long as they are installed indoors and in an area where pipes won’t freeze (typically, a basement), heat pump water heaters work throughout the year in all climates, according to Meyer and Wachunas. The rule of thumb, per the DOE, is to install your heat pump water heater in locations that remain in the 40 degree to 90 degree Fahrenheit range year-round.
Per the DOE, replacing your standard electric water heater with a heat pump water heater can save you up to 10% on your electricity bill, reducing your water heating energy consumption and costs by up to 70%.
The number one mistake homeowners make when it comes to their water heaters is waiting until they’re broken to replace them. This severely limits your options for new water heaters — as Foster notes, no one “wants to go days without hot water, let alone weeks,” and it can take weeks or even months to fit your home for a heat pump water heater. (We’ll get into why a bit later.)
“A lot of contractors, if you want a heat pump and you have a leaking water heater that needs to be replaced today, they're just going to convince you to go with gas,” Foster said.
Some contractors have loaner water heater programs, so you can temporarily use a gas heater in an emergency situation, but these programs are few and far between. If you’ve had your water heater for 10 years or more — even if it’s working just fine — it might be time to think about replacing it. If you do, you’ll need to consider a few things about your home and lifestyle, especially if you’re considering a heat pump water heater:
Heat pump water heaters require a significant amount of space. Per Pacific Northwest National Laboratory, heat pump water heaters can require more than 6 feet of height clearance to account for their air filters, as well as a 3-foot diameter space to provide clearance for the drain pan and other connections. Additionally, the heat pump water heater should be positioned so the exhaust outlet is at least 8 inches away from a wall, door, or ceiling.
Also, since heat pump water heaters work by drawing heat from the surrounding air, they require 700 cubic feet of unenclosed space surrounding the water heater location. While it is possible to install a heat pump water heater in a location with insufficient air volume (for instance, by installing the water heater with a door equipped with top and bottom grills), this would require extra work from your contractor. Taking all these measurements into account, this basically means that a heat pump water heater requires a 10-foot by 9-foot room with an 8-foot-tall ceiling.
Heat pump water heaters also require monthly and yearly service, Meyer told me. You should change the water filter every two to six months, and clear the condensate lines to ensure your unit doesn’t get clogged with mold or bacteria. Additionally, if your unit is a hybrid, you’ll have to keep an eye on its anode rod, which can become corroded over time and lead to heating issues. You’ll have to flush your heat pump water heater annually to avoid corrosion.
If you’re going to DIY it, understanding your household’s water needs is key to sizing and installing a new heat pump water heater. First, determine your house’s peak hour demand (the maximum amount of water your house uses in one hour per day) using this worksheet from the DOE. You can then use that number (measured in gallons) to determine what size heat water heater to buy — look at the heater’s first hour rating, a.k.a. the amount of hot water the heater can supply per hour, starting with a tank full of hot water. You’ll want your heater’s first hour rating to be equal to (or ideally, higher than) your peak hour demand.
Though you should use the worksheet to determine your unique peak hour demand, a general rule is that households of one to two people should use a 50-gallon water heater, while households of three or more people should use a 65- to 80-gallon tank. The average family uses 50 gallons of hot water per day, Wachunas explained. “So even if you have lots of showers in the morning, your heat pump in two to four hours will heat that water back up and you have plenty of extra supply.”
If you’re between two sizes of heat pump water heaters, always upsize, Foster said. This ensures that the heat pump is the primary source of heat, as opposed to the much less efficient backup electric mechanisms. In other words, it’s far more efficient (and less expensive!) for a larger heat pump water heater to heat a few extra gallons of water using the heat pump than it is for a smaller heat pump water heater to have to use its electric elements to keep up with excess demand.
Since many heat pump water heaters have certain voltage requirements, you may have to upgrade your electrical panel for 240-volt hardwired service. The cost and time involved in having your service upgraded can vary and depends on whether the power lines coming into your house are above ground. If they’re underground, Foster explained, a contractor will have to excavate and run new cables, which can take over a year. The best way to determine if you’ll need to upgrade your service is to have a trusted contractor do an assessment on your home. (This is also why it’s essential to plan in advance.)
Basements are always the best places for heat pump water heaters, regardless of climate. Other common locations for installation include garages, interior rooms, and rooms outside the thermal envelope, like attached sheds and utility rooms. The garage does not have to be insulated if outdoor temperatures are usually above 50°F, but if temperatures dip below freezing and the garage is uninsulated, it’d be best to consider another location. Interior rooms, like laundry or IT rooms, are a great choice because a heat pump water heater can utilize any waste heat generated by the equipment in the room. Finally, rooms outside the thermal envelope, like attached sheds, can be even more efficient than interior spaces in hot or warm climates because of the excess hot air.
Feeling ready to go shopping? Here’s everything you need to know about the buying and installation process.
This plug-in model caused quite a stir when it came out two years ago, and for good reason. Its low voltage allows it to be plugged into a standard outlet, making it a great fit for smaller homes with fewer residents, or anyone in need of a quick fix. (This is also a relatively foolproof choice for DIYers because of the quick and easy installation process.) For those wanting a model with a bit more flexibility but still an easy install, there’s the A.O. Smith Signature 900 Plug-in Hybrid, which is more expensive but has the added benefit of back-up electric resistance elements that help with higher hot water demand. Alternatively, you can go for the 120-Volt Rheem ProTerra Plug-in Water Heater with HydroBoost, which utilizes a mixing valve for maximum hot water output.
If app functionality is especially important to you, Rheem’s ProTerra line might be particularly appealing. The EcoNet app allows users to monitor the hot water heater from their phone, with status updates on potential leaks as well as compressor health, hot water availability and the unit’s set water temperature.
Another solid choice for larger families, for roughly the same price, is A.O. Smith’s Signature 900 80-Gal. For further durability, consider Bradford White’s Aerotherm Series water heaters, which can only be purchased through a qualified contractor, but are frequently praised for their resilience and anti-microbial technology.
Split-system heat pump water heaters are the answer for truly huge houses, where the heat pump itself is outside while the storage tank remains inside. “You can chain together as many heat pump units as you want with as many storage tanks as you want,” Foster said. “So you can create as big a system as you want.” While split-system heat pump water heaters are much less widely-available in the U.S. than they are in Asia and Europe, you can purchase this one online. SANCO is also shipping a new fifth generation unit soon, Quit Carbon advises, which may prove more cost-effective and will qualify for more rebates in California.
The quietest HPWH on the market, at 45 decibels, is made by A.O. Smith, according to Foster. It’s available in 50, 65, and 80 gallon sizes, so it can accommodate a variety of household types. Another quiet option is LG’s Inverter Heat Pump Water Heater, though LG is much newer to the heat pump water heater game than Rheem and A.O. Smith, so it may be more difficult to find qualified contractors.
Three more expert contractors I spoke with — Nate Adams, a longtime HVAC insulation and sealing contractor in West Virginia who specializes in electrification retrofits for homeowners; John Semmelhack, an HVAC consultant and the owner of Think Little, a building science consulting firm specializing in mechanical system design for passive house and net-zero energy homes; and Tim Portman, the owner of Portman Mechanical, specializing in electrification, heating and cooling, and home performance — had concerns about heat pump water heater installations.
Adams said heaters he’s installed have had a 50% failure rate, while Portman and Semmelhack cite a 60% failure rate. These issues have seemingly cropped up after 2018 and are almost entirely occurring with A.O. Smith and Rheem’s fifth generation of water heater models; older generations performed and continue to perform much better. “All my installs from 2014-2018 are still running to my knowledge,” says Adams. “Which is a big part of my frustration— we had this figured out already.”
The specific causes of these failures vary, spanning from tanks bursting to heat pumps losing charge, according to Adams. Semmelhack and Portman, meanwhile, pointed mainly to refrigerant leaks and compressor issues. (A.O. Smith and Rheem did not respond to requests for comment.) “All of the failures are happening inside the first year of operation,” noted Semmelhack. “So it's happening pretty quick, which makes us think that it's a factory problem and not an environmental problem inside the household.”
Semmelhack and Portman are hopeful about Cala’s new heat pump water heaters, which use an AI-powered control system to forecast hot water demand and heat the water in the tank accordingly with a heat pump. They’re aiming to start shipping those units in 2025, and you can preorder and learn more here.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Citrine Informatics has been applying machine learning to materials discovery for years. Now more advanced models are giving the tech a big boost.
When ChatGPT launched three years ago, it became abundantly clear that the power of generative artificial intelligence had the capacity to extend far beyond clever chatbots. Companies raised huge amounts of funding based on the idea that this new, more powerful AI could solve fundamental problems in science and medicine — design new proteins, discover breakthrough drugs, or invent new battery chemistries.
Citrine Informatics, however, has largely kept its head down. The startup was founded long before the AI boom, back in 2013, with the intention of using simple old machine learning to speed up the development of more advanced, sustainable materials. These days Citrine is doing the same thing, but with neural networks and transformers, the architecture that undergirds the generative AI revolution.
“The technology transition we’re going through right now is pretty massive,” Greg Mulholland, Citrine’s founder and CEO, told me. “But the core underlying goal of the company is still the same: help scientists identify the experiments that will get them to their material outcome as fast as possible.”
Rather than developing its own novel materials, Citrine operates on a software-as-a-service model, selling its platform to companies including Rolls-Royce, EMD Electronics, and chemicals giant LyondellBassell. While a SaaS product may be less glamorous than independently discovering a breakthrough compound that enables something like a room-temperature superconductor or an ultra-high-density battery, Citrine’s approach has already surfaced commercially relevant materials across a variety of sectors, while the boldest promises of generative AI for science remain distant dreams.
“You can think of it as science versus engineering,” Mulholland told me. “A lot of science is being done. Citrine is definitely the best in kind of taking it to the engineering level and coming to a product outcome rather than a scientific discovery.” Citrine has helped to develop everything from bio-based lotion ingredients to replace petrochemical-derived ones, to plastic-free detergents, to more sustainable fire-resistant home insulation, to PFAS-free food packaging, to UV-resistant paints.
On Wednesday, the company unveiled two new platform capabilities that it says will take its approach to the next level. The first is essentially an advanced LLM-powered filing system that organizes and structures unwieldy materials and chemicals datasets from across a company. The second is an AI framework informed by an extensive repository of chemistry, physics, and materials knowledge. It can ingest a company’s existing data, and, even if the overall volume is small, use it to create a list of hundreds of potential new materials optimized for factors such as sustainability, durability, weight, manufacturability, or whatever other outcomes the company is targeting.
The platform is neither purely generative nor purely predictive. Instead, Mulholland explained, companies can choose to use Citrine’s tools “in a more generative mode” if they want to explore broadly and open up the field of possible materials discoveries, or in a more “optimized” mode that stays narrowly focused on the parameters they set. “What we find is you need a healthy blend of the two,” he told me.
The novel compounds the model spits out still need to be synthesized and tested by humans. “What I tell people is, any plane made of materials designed exclusively by Citrine and never tested is not a plane I’m getting on,” Mulholland told me. The goal isn’t to achieve perfection right out of the lab, but rather to optimize the experiments companies end up having to do. “We still need to prove materials in the real world, because the real world will complicate it.”
Indeed it will. For one thing, while AI is capable of churning out millions of hypothetical materials — as a tool developed by Google DeepMind did in 2023 — materials scientists have since shown that many are just variants of known compounds, while others are unstable, unable to be synthesized, or otherwise irrelevant under real world conditions.
Such failures likely stem, in part, from another common limitation of AI models trained solely on publicly available materials and chemicals data: Academic research tends to report only successful outcomes, omitting data on what didn’t work and which compounds weren’t viable. That can lead models to be overly optimistic about the magnitude and potential of possible materials solutions and generate unrealistic “discoveries” that may have already been tested and rejected.
Because Citrine’s platform is deployed within customer organizations, it can largely sidestep this problem by tuning its model on niche, proprietary datasets. These datasets are small when compared with the vast public repositories used to train Citrine’s base model, but the granular information they contain about prior experiments — both successes and failures — has proven critical to bringing new discoveries to market.
While the holy grail for materials science may be a model trained on all the world’s relevant data — public and private, positive and negative — at this point that’s just a fantasy, one of Citrine’s investors, Mark Cupta of Prelude Ventures, told me over email. “It’s hard to get buy-in from the entire material development world to make an open-source model that pulls in data from across the field.”
Citrine’s last raise, which Prelude co-led, came at the very beginning of 2023, as the AI wave was still gathering momentum. But Mulholland said there’s no rush to raise additional capital — in fact, he expects Citrine to turn a profit in the next year or so.
That milestone would strongly validate the company’s strategy, which banks on steady revenue from its subscription-based model to compensate for the fact that it doesn’t own the intellectual property for the materials it helps develop. While Mulholland told me that many players in this space are trying to “invent new materials and patent them and try to sell them like drugs,” Citrine is able to “invent things much more quickly, in a more realistic way than the pie in the sky, hoping for a Nobel Prize [approach].”
Citrine is also careful to assure that its model accounts for real world constraints such as regulations and production bottlenecks. Say a materials company is creating an aluminum alloy for an automaker, Mulholland explained — it might be critical to stay within certain elemental bounds. If the company were to add in novel elements, the automaker would likely want to put its new compound through a rigorous testing process, which would be annoying if it’s looking to get to market as quickly as possible. Better, perhaps, to tinker around the edges of what’s well understood.
In fact, Mulholland told me it’s often these marginal improvements that initially bring customers into the fold, convincing them that this whole AI-for-materials thing is more than just hype. “The first project is almost always like, make the adhesive a little bit stickier — because that’s a good way to prove to these skeptical scientists that AI is real and here to stay,” he said. “And then they use that as justification to invest further and further back in their product development pipeline, such that their whole product portfolio can be optimized by AI.”
Overall, the company says that its new framework can speed up materials development by 80%. So while Mulholland and Citrine overall may not be going for the Nobel in Chemistry, don’t doubt for a second that they’re trying to lead a fundamental shift in the way consumer products are designed.
“I’m as bullish as I can possibly be on AI in science,” Mulholland told me. “It is the most exciting time to be a scientist since Newton. But I think that the gap between scientific discovery and realized business is much larger than a lot of AI folks think.”
Plus more insights from Heatmap’s latest event Washington, D.C.
At Heatmap’s event, “Supercharging the Grid,” two members of the House of Representatives — a California Democrat and a Colorado Republican — talked about their shared political fight to loosen implementation of the National Environmental Policy Act to accelerate energy deployment.
Representatives Gabe Evans and Scott Peters spoke with Heatmap’s Robinson Meyer at the Washington, D.C., gathering about how permitting reform is faring in Congress.
“The game in the 1970s was to stop things, but if you’re a climate activist now, the game is to build things,” said Peters, who worked as an environmental lawyer for many years. “My proposal is, get out of the way of everything and we win. Renewables win. And NEPA is a big delay.”
NEPA requires that the federal government review the environmental implications of its actions before finalizing them, permitting decisions included. The 50-year-old environmental law has already undergone several rounds of reform, including efforts under both Presidents Biden and Trump to remove redundancies and reduce the size and scope of environmental analyses conducted under the law. But bottlenecks remain — completing the highest level of review under the law still takes four-and-a-half years, on average. Just before Thanksgiving, the House Committee on Natural Resources advanced the SPEED Act, which aims to ease that congestion by creating shortcuts for environmental reviews, limiting judicial review of the final assessments, and preventing current and future presidents from arbitrarily rescinding permits, subject to certain exceptions.
Evans framed the problem in terms of keeping up with countries like China on building energy infrastructure. “I’ve seen how other parts of the world produce energy, produce other things,” said Evans. “We build things cleaner and more responsibly here than really anywhere else on the planet.”
Both representatives agreed that the SPEED Act on its own wouldn’t solve all the United States’ energy issues. Peters hinted at other permitting legislation in the works.
“We want to take that SPEED Act on the NEPA reform and marry it with specific energy reforms, including transmission,” said Peters.
Next, Neil Chatterjee, a former Commissioner of the Federal Energy Regulatory Commission, explained to Rob another regulatory change that could affect the pace of energy infrastructure buildout: a directive from the Department of Energy to FERC to come up with better ways of connecting large new sources of electricity demand — i.e. data centers — to the grid.
“This issue is all about data centers and AI, but it goes beyond data centers and AI,” said Chatterjee. “It deals with all of the pressures that we are seeing in terms of demand from the grid from cloud computing and quantum computing, streaming services, crypto and Bitcoin mining, reshoring of manufacturing, vehicle electrification, building electrification, semiconductor manufacturing.”
Chatterjee argued that navigating load growth to support AI data centers should be a bipartisan issue. He expressed hope that AI could help bridge the partisan divide.
“We have become mired in this politics of, if you’re for fossil fuels, you are of the political right. If you’re for clean energy and climate solutions, you’re the political left,” he said. “I think AI is going to be the thing that busts us out of it.”
Updating and upgrading the grid to accommodate data centers has grown more urgent in the face of drastically rising electricity demand projections.
Marsden Hanna, Google’s head of energy and dust policy, told Heatmap’s Jillian Goodman that the company is eyeing transmission technology to connect its own data centers to the grid faster.
“We looked at advanced transition technologies, high performance conductors,” said Hanna. “We see that really as just an incredibly rapid, no-brainer opportunity.”
Advanced transmission technologies, otherwise known as ATTs, could help expand the existing grid’s capacity, freeing up space for some of the load growth that economy-wide electrification and data centers would require. Building new transmission lines, however, requires permits — the central issue that panelists kept returning to throughout the event.
Devin Hartman, director of energy and environmental policy at the R Street Institute, told Jillian that investors are nervous that already-approved permits could be revoked — something the solar industry has struggled with under the Trump administration.
“Half the battle now is not just getting the permits on time and getting projects to break ground,” said Hartman. “It’s also permitting permanence.”
This event was made possible by the American Council on Renewable Energy’s Macro Grid Initiative.
On gas turbine backorders, Europe’s not-so-green deal, and Iranian cloud seeding
Current conditions: Up to 10 inches of rain in the Cascades threatens mudslides, particularly in areas where wildfires denuded the landscape of the trees whose roots once held soil in place • South Africa has issued extreme fire warnings for Northern Cape, Western Cape, and Eastern Cape • Still roiling from last week’s failed attempt at a military coup, Benin’s capital of Cotonou is in the midst of a streak of days with temperatures over 90 degrees Fahrenheit and no end in sight.

Exxon Mobil Corp. plans to cut planned spending on low-carbon projects by a third, joining much of the rest of its industry in refocusing on fossil fuels. The nation’s largest oil producer said it would increase its earnings and cash flow by $5 billion by 2030. The company projected earnings to grow by 13% each year without any increase in capital spending. But the upstream division, which includes exploration and production, is expected to bring in $14 billion in earnings growth compared to 2024. The key projects The Wall Street Journal listed in the Permian Basin, Guyana and at liquified natural gas sites would total $4 billion in earnings growth alone over the next five years. The announcement came a day before the Department of the Interior auctioned off $279 million of leases across 80 million acres of federal waters in the Gulf of Mexico.
Speaking of oil and water, early Wednesday U.S. armed forces seized an oil tanker off the coast of Venezuela in what The New York Times called “a dramatic escalation in President Trump’s pressure campaign against Nicolás Maduro.” When asked what would become of the vessel's oil, Trump said at the White House, “Well, we keep it, I guess.”
The Federal Reserve slashed its key benchmark interest rate for the third time this year. The 0.25 percentage point cut was meant to calibrate the borrowing costs to stay within a range between 3.5% and 3.75%. The 9-3 vote by the central bank’s board of governors amounted to what Wall Street calls a hawkish cut, a move to prop up a cooling labor market while signaling strong concerns about future downward adjustments that’s considered so rare CNBC previously questioned whether it could be real. But it’s good news for clean energy. As Heatmap’s Matthew Zeitlin wrote after the September rate cut, lower borrowing costs “may provide some relief to renewables developers and investors, who are especially sensitive to financing costs.” But it likely isn’t enough to wipe out the effects of Trump’s tariffs and tax credit phaseouts.
GE Vernova plans to increase its capacity to manufacture gas turbines by 20 gigawatts once assembly line expansions are completed in the middle of next year. But in a presentation to investors this week, the company said it’s already sold out of new gas turbines all the way through 2028, and has less than 10 gigawatts of equipment left to sell for 2029. It’s no wonder supersonic jet startups, as I wrote about in yesterday’s newsletter, are now eyeing a near-term windfall by getting into the gas turbine business.
Sign up to receive Heatmap AM in your inbox every morning:
The European Union will free more than 80% of the companies from environmental reporting rules under a deal struck this week. The agreement between EU institutions marks what Politico Europe called a “major legislative victory” for European Commission President Ursula von der Leyen, who has sought to make the bloc more economically self-sufficient by cutting red tape for business in her second term in office. The rollback is also a win for Trump, whose administration heavily criticized the EU’s green rules. It’s also a victory for the U.S. president’s far-right allies in Europe. The deal fractured the coalition that got the German politician reelected to the EU’s top job, forcing her center-right faction to team up with the far right to win enough votes for secure victory.
Ravaged by drought, Iran is carrying out cloud-seeding operations in a bid to increase rainfall amid what the Financial Times clocked as “the worst water crisis in six decades.” On Tuesday, Abbas Aliabadi, the energy minister, said the country had begun a fresh round of injecting crystals into clouds using planes, drones, and ground-based launchers. The country has even started developing drones specifically tailored to cloud seeding.
The effort comes just weeks after the Islamic Republic announced that it “no longer has a choice” but to move its capital city as ongoing strain on water supplies and land causes Tehran to sink by nearly one foot per year. As I wrote in this newsletter, Iranian President Masoud Pezeshkian called the situation a “catastrophe” and “a dark future.”
The end of suburban kids whiffing diesel exhaust in the back of stuffy, rumbling old yellow school buses is nigh. The battery-powered bus startup Highland Electric Fleets just raised $150 million in an equity round from Aiga Capital Partners to deploy its fleets of buses and trucks across the U.S., Axios reported. In a press release, the company said its vehicles would hit the streets by next year.