You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Everything you need to know — including one big (potential) drawback.
The humble water heater, like your fridge or septic tank, is the type of home technology that you only notice if and when it breaks. For most homeowners, that’s every 13 years. But if you’re on a mission to decarbonize your life, you might want to rethink your current set-up, and perhaps consider a makeover. Per the Department of Energy, water heating accounts for roughly 18% of the average household’s energy use, making it the second largest energy expense in any home.
Back in April, the DOE released new residential water heater standards that it says will save American households approximately $7.6 billion per year on their energy bills “while significantly cutting energy waste and harmful carbon pollution.” The standards will also, in effect, phase out electric resistance water heaters, which currently account for half the U.S. market, in favor of more energy-efficient heat pump water heaters by 2029. If any of that confuses you, read on. We’re breaking down everything you need to know about this oft-forgotten, basement-dwelling home technology, from the taxonomy of water heater types to tax credit and rebate tips to product recommendations.
Andy Meyer is a senior program manager at Efficiency Maine, an independent agency that implements energy efficiency programs in the state. His team is responsible for providing resources on heat pump water heaters to Maine residents, who buy one out of every 10 purchased in the U.S.
Ben Foster is vice president of operations at Barnett Plumbing & Water Heaters, a leading heat pump water heater contractor in California. He’s also developed loaner water heater programs supported by TECH Clean California, and notes that most contractors don’t have access to loaner programs:
Joseph Wachunas is a senior project manager at the New Buildings Institute, a nonprofit working to reduce emissions and deliver climate solutions through the built environment. At NBI, he heads up the Advanced Water Heating Initiative, which aims to decarbonize water heating through heat pump water heaters.
“Heat pump water heaters are simple to install — any plumber or handy person can do it — but plumbers may not be familiar with them. So if you talk with a plumber who has concerns, consider calling another plumber,” Meyer told me. “Again, Mainers have installed over 70,000 in the last 12 years. They are no longer new.”
A heat pump water heater is made up of a compressor, storage tank, condenser, evaporator coil, fan, backup heating elements, and refrigerant. The compressor, located in the upper compartment of the water heater, uses refrigerant to heat the water in the storage tank (via the condenser, which acts as a heat exchanger). The evaporator coil and fan work to change refrigerant from liquid back to gas after the water has been heated. The backup electric heating elements kick in only in periods of high demand to ensure consistent hot water supply.
A common misconception about heat pumps in general is that they don’t work in colder climates. This is not at all the case — half of electric water heaters in Maine, for instance, are now heat pumps. As long as they are installed indoors and in an area where pipes won’t freeze (typically, a basement), heat pump water heaters work throughout the year in all climates, according to Meyer and Wachunas. The rule of thumb, per the DOE, is to install your heat pump water heater in locations that remain in the 40 degree to 90 degree Fahrenheit range year-round.
Per the DOE, replacing your standard electric water heater with a heat pump water heater can save you up to 10% on your electricity bill, reducing your water heating energy consumption and costs by up to 70%.
The number one mistake homeowners make when it comes to their water heaters is waiting until they’re broken to replace them. This severely limits your options for new water heaters — as Foster notes, no one “wants to go days without hot water, let alone weeks,” and it can take weeks or even months to fit your home for a heat pump water heater. (We’ll get into why a bit later.)
“A lot of contractors, if you want a heat pump and you have a leaking water heater that needs to be replaced today, they're just going to convince you to go with gas,” Foster said.
Some contractors have loaner water heater programs, so you can temporarily use a gas heater in an emergency situation, but these programs are few and far between. If you’ve had your water heater for 10 years or more — even if it’s working just fine — it might be time to think about replacing it. If you do, you’ll need to consider a few things about your home and lifestyle, especially if you’re considering a heat pump water heater:
Heat pump water heaters require a significant amount of space. Per Pacific Northwest National Laboratory, heat pump water heaters can require more than 6 feet of height clearance to account for their air filters, as well as a 3-foot diameter space to provide clearance for the drain pan and other connections. Additionally, the heat pump water heater should be positioned so the exhaust outlet is at least 8 inches away from a wall, door, or ceiling.
Also, since heat pump water heaters work by drawing heat from the surrounding air, they require 700 cubic feet of unenclosed space surrounding the water heater location. While it is possible to install a heat pump water heater in a location with insufficient air volume (for instance, by installing the water heater with a door equipped with top and bottom grills), this would require extra work from your contractor. Taking all these measurements into account, this basically means that a heat pump water heater requires a 10-foot by 9-foot room with an 8-foot-tall ceiling.
Heat pump water heaters also require monthly and yearly service, Meyer told me. You should change the water filter every two to six months, and clear the condensate lines to ensure your unit doesn’t get clogged with mold or bacteria. Additionally, if your unit is a hybrid, you’ll have to keep an eye on its anode rod, which can become corroded over time and lead to heating issues. You’ll have to flush your heat pump water heater annually to avoid corrosion.
If you’re going to DIY it, understanding your household’s water needs is key to sizing and installing a new heat pump water heater. First, determine your house’s peak hour demand (the maximum amount of water your house uses in one hour per day) using this worksheet from the DOE. You can then use that number (measured in gallons) to determine what size heat water heater to buy — look at the heater’s first hour rating, a.k.a. the amount of hot water the heater can supply per hour, starting with a tank full of hot water. You’ll want your heater’s first hour rating to be equal to (or ideally, higher than) your peak hour demand.
Though you should use the worksheet to determine your unique peak hour demand, a general rule is that households of one to two people should use a 50-gallon water heater, while households of three or more people should use a 65- to 80-gallon tank. The average family uses 50 gallons of hot water per day, Wachunas explained. “So even if you have lots of showers in the morning, your heat pump in two to four hours will heat that water back up and you have plenty of extra supply.”
If you’re between two sizes of heat pump water heaters, always upsize, Foster said. This ensures that the heat pump is the primary source of heat, as opposed to the much less efficient backup electric mechanisms. In other words, it’s far more efficient (and less expensive!) for a larger heat pump water heater to heat a few extra gallons of water using the heat pump than it is for a smaller heat pump water heater to have to use its electric elements to keep up with excess demand.
Since many heat pump water heaters have certain voltage requirements, you may have to upgrade your electrical panel for 240-volt hardwired service. The cost and time involved in having your service upgraded can vary and depends on whether the power lines coming into your house are above ground. If they’re underground, Foster explained, a contractor will have to excavate and run new cables, which can take over a year. The best way to determine if you’ll need to upgrade your service is to have a trusted contractor do an assessment on your home. (This is also why it’s essential to plan in advance.)
Basements are always the best places for heat pump water heaters, regardless of climate. Other common locations for installation include garages, interior rooms, and rooms outside the thermal envelope, like attached sheds and utility rooms. The garage does not have to be insulated if outdoor temperatures are usually above 50°F, but if temperatures dip below freezing and the garage is uninsulated, it’d be best to consider another location. Interior rooms, like laundry or IT rooms, are a great choice because a heat pump water heater can utilize any waste heat generated by the equipment in the room. Finally, rooms outside the thermal envelope, like attached sheds, can be even more efficient than interior spaces in hot or warm climates because of the excess hot air.
Feeling ready to go shopping? Here’s everything you need to know about the buying and installation process.
This plug-in model caused quite a stir when it came out two years ago, and for good reason. Its low voltage allows it to be plugged into a standard outlet, making it a great fit for smaller homes with fewer residents, or anyone in need of a quick fix. (This is also a relatively foolproof choice for DIYers because of the quick and easy installation process.) For those wanting a model with a bit more flexibility but still an easy install, there’s the A.O. Smith Signature 900 Plug-in Hybrid, which is more expensive but has the added benefit of back-up electric resistance elements that help with higher hot water demand. Alternatively, you can go for the 120-Volt Rheem ProTerra Plug-in Water Heater with HydroBoost, which utilizes a mixing valve for maximum hot water output.
If app functionality is especially important to you, Rheem’s ProTerra line might be particularly appealing. The EcoNet app allows users to monitor the hot water heater from their phone, with status updates on potential leaks as well as compressor health, hot water availability and the unit’s set water temperature.
Another solid choice for larger families, for roughly the same price, is A.O. Smith’s Signature 900 80-Gal. For further durability, consider Bradford White’s Aerotherm Series water heaters, which can only be purchased through a qualified contractor, but are frequently praised for their resilience and anti-microbial technology.
Split-system heat pump water heaters are the answer for truly huge houses, where the heat pump itself is outside while the storage tank remains inside. “You can chain together as many heat pump units as you want with as many storage tanks as you want,” Foster said. “So you can create as big a system as you want.” While split-system heat pump water heaters are much less widely-available in the U.S. than they are in Asia and Europe, you can purchase this one online. SANCO is also shipping a new fifth generation unit soon, Quit Carbon advises, which may prove more cost-effective and will qualify for more rebates in California.
The quietest HPWH on the market, at 45 decibels, is made by A.O. Smith, according to Foster. It’s available in 50, 65, and 80 gallon sizes, so it can accommodate a variety of household types. Another quiet option is LG’s Inverter Heat Pump Water Heater, though LG is much newer to the heat pump water heater game than Rheem and A.O. Smith, so it may be more difficult to find qualified contractors.
Three more expert contractors I spoke with — Nate Adams, a longtime HVAC insulation and sealing contractor in West Virginia who specializes in electrification retrofits for homeowners; John Semmelhack, an HVAC consultant and the owner of Think Little, a building science consulting firm specializing in mechanical system design for passive house and net-zero energy homes; and Tim Portman, the owner of Portman Mechanical, specializing in electrification, heating and cooling, and home performance — had concerns about heat pump water heater installations.
Adams said heaters he’s installed have had a 50% failure rate, while Portman and Semmelhack cite a 60% failure rate. These issues have seemingly cropped up after 2018 and are almost entirely occurring with A.O. Smith and Rheem’s fifth generation of water heater models; older generations performed and continue to perform much better. “All my installs from 2014-2018 are still running to my knowledge,” says Adams. “Which is a big part of my frustration— we had this figured out already.”
The specific causes of these failures vary, spanning from tanks bursting to heat pumps losing charge, according to Adams. Semmelhack and Portman, meanwhile, pointed mainly to refrigerant leaks and compressor issues. (A.O. Smith and Rheem did not respond to requests for comment.) “All of the failures are happening inside the first year of operation,” noted Semmelhack. “So it's happening pretty quick, which makes us think that it's a factory problem and not an environmental problem inside the household.”
Semmelhack and Portman are hopeful about Cala’s new heat pump water heaters, which use an AI-powered control system to forecast hot water demand and heat the water in the tank accordingly with a heat pump. They’re aiming to start shipping those units in 2025, and you can preorder and learn more here.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A war of attrition is now turning in opponents’ favor.
A solar developer’s defeat in Massachusetts last week reveals just how much stronger project opponents are on the battlefield after the de facto repeal of the Inflation Reduction Act.
Last week, solar developer PureSky pulled five projects under development around the western Massachusetts town of Shutesbury. PureSky’s facilities had been in the works for years and would together represent what the developer has claimed would be one of the state’s largest solar projects thus far. In a statement, the company laid blame on “broader policy and regulatory headwinds,” including the state’s existing renewables incentives not keeping pace with rising costs and “federal policy updates,” which PureSky said were “making it harder to finance projects like those proposed near Shutesbury.”
But tucked in its press release was an admission from the company’s vice president of development Derek Moretz: this was also about the town, which had enacted a bylaw significantly restricting solar development that the company was until recently fighting vigorously in court.
“There are very few areas in the Commonwealth that are feasible to reach its clean energy goals,” Moretz stated. “We respect the Town’s conservation go als, but it is clear that systemic reforms are needed for Massachusetts to source its own energy.”
This stems from a story that probably sounds familiar: after proposing the projects, PureSky began reckoning with a burgeoning opposition campaign centered around nature conservation. Led by a fresh opposition group, Smart Solar Shutesbury, activists successfully pushed the town to drastically curtail development in 2023, pointing to the amount of forest acreage that would potentially be cleared in order to construct the projects. The town had previously not permitted facilities larger than 15 acres, but the fresh change went further, essentially banning battery storage and solar projects in most areas.
When this first happened, the state Attorney General’s office actually had PureSky’s back, challenging the legality of the bylaw that would block construction. And PureSky filed a lawsuit that was, until recently, ongoing with no signs of stopping. But last week, shortly after the Treasury Department unveiled its rules for implementing Trump’s new tax and spending law, which basically repealed the Inflation Reduction Act, PureSky settled with the town and dropped the lawsuit – and the projects went away along with the court fight.
What does this tell us? Well, things out in the country must be getting quite bleak for solar developers in areas with strident and locked-in opposition that could be costly to fight. Where before project developers might have been able to stomach the struggle, money talks – and the dollars are starting to tell executives to lay down their arms.
The picture gets worse on the macro level: On Monday, the Solar Energy Industries Association released a report declaring that federal policy changes brought about by phasing out federal tax incentives would put the U.S. at risk of losing upwards of 55 gigawatts of solar project development by 2030, representing a loss of more than 20 percent of the project pipeline.
But the trade group said most of that total – 44 gigawatts – was linked specifically to the Trump administration’s decision to halt federal permitting for renewable energy facilities, a decision that may impact generation out west but has little-to-know bearing on most large solar projects because those are almost always on private land.
Heatmap Pro can tell us how much is at stake here. To give you a sense of perspective, across the U.S., over 81 gigawatts worth of renewable energy projects are being contested right now, with non-Western states – the Northeast, South and Midwest – making up almost 60% of that potential capacity.
If historical trends hold, you’d expect a staggering 49% of those projects to be canceled. That would be on top of the totals SEIA suggests could be at risk from new Trump permitting policies.
I suspect the rate of cancellations in the face of project opposition will increase. And if this policy landscape is helping activists kill projects in blue states in desperate need of power, like Massachusetts, then the future may be more difficult to swallow than we can imagine at the moment.
And more on the week’s most important conflicts around renewables.
1. Wells County, Indiana – One of the nation’s most at-risk solar projects may now be prompting a full on moratorium.
2. Clark County, Ohio – Another Ohio county has significantly restricted renewable energy development, this time with big political implications.
3. Daviess County, Kentucky – NextEra’s having some problems getting past this county’s setbacks.
4. Columbia County, Georgia – Sometimes the wealthy will just say no to a solar farm.
5. Ottawa County, Michigan – A proposed battery storage facility in the Mitten State looks like it is about to test the state’s new permitting primacy law.
A conversation with Jeff Seidman, a professor at Vassar College.
This week’s conversation is with Jeff Seidman, a professor at Vassar College and an avid Heatmap News reader. Last week Seidman claimed a personal victory: he successfully led an effort to overturn a moratorium on battery storage development in the town of Poughkeepsie in Hudson Valley, New York. After reading a thread about the effort he posted to BlueSky, I reached out to chat about what my readers might learn from his endeavors – and how they could replicate them, should they want to.
The following conversation was lightly edited for clarity.
So how did you decide to fight against a battery storage ban? What was your process here?
First of all, I’m not a professional in this area, but I’ve been learning about climate stuff for a long time. I date my education back to when Vox started and I read my first David Roberts column there. But I just happened to hear from someone I know that in the town of Poughkeepsie where I live that a developer made a proposal and local residents who live nearby were up in arms about it. And I heard the town was about to impose a moratorium – this was back in March 2024.
I actually personally know some of the town board members, and we have a Democratic majority who absolutely care about climate change but didn’t particularly know that battery power was important to the energy transition and decarbonizing the grid. So I organized five or six people to go to the town board meeting, wrote a letter, and in that initial board meeting we characterized the reason we were there as being about climate.
There were a lot more people on the other side. They were very angry. So we said do a short moratorium because every day we’re delaying this, peaker plants nearby are spewing SOx and NOx into the air. The status quo has a cost.
But then the other side, they were clearly triggered by the climate stuff and said renewables make the grid more expensive. We’d clearly pressed a button in the culture wars. And then we realized the mistake, because we lost that one.
When you were approaching getting this overturned, what considerations did you make?
After that initial meeting and seeing how those mentions of climate or even renewables had triggered a portion of the board, and the audience, I really course-corrected. I realized we had to make this all about local benefits. So that’s what I tried to do going forward.
Even for people who were climate concerned, it was really clear that what they perceived as a present risk in their neighborhood was way more salient than an abstract thing like contributing to the fight against climate change globally. So even for people potentially on your side, you have to make it about local benefits.
The other thing we did was we called a two-hour forum for the county supervisors and mayor’s association because we realized talking to them in a polarized environment was not a way to have a conversation. I spoke and so did Paul Rogers, a former New York Fire Department lieutenant who is now in fire safety consulting – he sounds like a firefighter and can speak with a credibility that I could never match in front of, for example, local fire chiefs. Winning them over was important. And we took more than an hour of questions.
Stage one was to convince them of why batteries were important. Stage two was to show that a large number of constituents were angry about the moratorium, but that Republicans were putting on a unified front against this – an issue to win votes. So there was a period where Democrats on the Poughkeepsie board were convinced but it was politically difficult for them.
But stage three became helping them do the right thing, even with the risk of there being a political cost.
What would you say to those in other parts of the country who want to do what you did?
If possible, get a zoning law in place before there is any developer with a specific proposal because all of the opposition to this project came from people directly next to the proposed project. Get in there before there’s a specific project site.
Even if you’re in a very blue city, don’t make it primarily about climate. Abstract climate loses to non-abstract perceived risk every time. Make it about local benefits.
To the extent you can, read and educate yourself about what good batteries provide to the grid. There’s a lot of local economic benefits there.
I am trying to put together some of the resources I used into a packet, a tool kit, so that people elsewhere can learn from it and draw from those resources.
Also, the more you know, the better. All those years of reading David Roberts and Heatmap gave me enough knowledge to actually answer questions here. It works especially when you have board members who may be sympathetic but need to be reassured.