Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

China’s Solar Boom Is Big, Fast, and Unstable

China is installing a jaw-dropping amount of solar panels, but growth in electricity generation from solar is barely increasing. Meanwhile prices are remarkably volatile. What gives?

Chinese flags as solar panels.
Heatmap Illustration/Getty Images

China’s solar revolution is immense — quite literally world-changing — but that doesn’t mean everything is running smoothly.

Last year China installed a record-breaking amount of solar – 87.4 GW – but that number came amidst zero COVID lockdowns and economic turmoil. This year, things are off to a blazing start, with over 48 GW already installed through April and BloombergNEF projections exceeding 154 GW for 2023. For comparison, total installed capacity in the United States is only 142 GW, meaning China is deploying more solar this year than the U.S. has put up over the past two decades. There’s simply nothing happening that approaches the scale of what China is doing anywhere else on the planet. Many of these panels are part of gargantuan energy bases in China’s remote north and western deserts, but rooftop solar is also growing rapidly.

China isn’t just deploying solar power, it’s expanding factories up and down the supply chain. In September of last year, amid crazy natural gas prices, spiking lithium markets, and concerns about Europe freezing, Bloomberg’s David Fickling sounded an optimistic note by looking closely at the solar supply chain. Polysilicon, ingots, wafers, cells, and modules all have annual production capable of making enough to add over 400 GW, suggesting there was a lot more room to run.

Similar announcements continued the drumbeat of solar growth. LONGi declared in January it intends to spend over $6.5 billion to build the world’s biggest manufacturing site for solar. Tongwei, world-leading polysilicon producer and cell maker, is vertically integrating to capture more of the value from its output, expanding into modules.

The cumulative scale of these investments is something to behold. The IEA’s 2050 Net Zero Emission report has been a benchmark for examining the progress the world is making (or, more often not making) towards deep decarbonization. Just a few weeks ago, Exxon denounced it as unrealistic, saying that it’s “highly unlikely that society would accept the degradation in global standard of living required to permanently achieve a scenario like the IEA NZE.” But the IEA just released a report finding that in terms of solar production, the world is already ahead of their 2030 targets. And not just a little ahead. The 1.1 TW (that’s terrawatts!) of manufacturing capacity is “65% higher than the level required to satisfy deployment needs under the NZE Scenario in 2030.

To be sure, solar isn’t everything, and while the battery sector is similarly ramping up, other key technologies, like wind, are relatively stagnant. Still, we’re at the point where the question isn’t whether we can make enough solar panels to hit climate goals, but how much we’ll need to reconsider the energy mix in these scenarios and just lean more into solar.

The sufficiency of the global supply chain shouldn’t paper over the fact that the vast majority of this investment and production capacity is taking place in China.

There have been many welcome announcements about investments in clean tech production taking place in the United States and Europe, especially in the wake of last year’s Inflation Reduction Act, but nothing compares to the Chinese renewables industry. Italy’s Enel announced it would build a “massive” solar-panel facility in Sicily — its planned capacity: 3 GW. The new IEA report explicitly defines “major projects” as those over 20 GW a year, all of which so far are located in China.

This pattern of development makes clear the dangers of decoupling from China. The EU can’t come close to hitting its goal of installing 400 GW in the next seven years without relying on Chinese panels. But if Europe and North America boycott Chinese-made solar, then these game-changing investments might evaporate.

Not a Dinner Party

However, to paraphrase Mao, the solar revolution is not a dinner party.

All of this construction and production is needed to meet our climate goals, but there remain critical questions about how neatly supply and demand will sync up.

Venture capitalist Dipender Saluja calls the energy transition “the biggest opportunity in the history of the world.” He’s thinking about profits when he says this, but profits don’t arise merely from investing in a growing sector. Cutthroat competition, material constraints, time inconsistency, managerial capacity, logistical difficulties, geopolitical pressures, interest rates, financial stability, global pandemics, and more all mean profits in renewable energy are hard won.

For example, the solar sector saw prices of polysilicon, a critical component of solar panels, collapse from $36 per kilogram in December to below $20 in mid-February, only to see it quickly rebound back to $30 by the middle of February before sliding back down below $20 now. This kind of volatility wreaks havoc on the supply chain.

Indeed, the major manufacturers fear that price pressures and overcapacity are going to lead to businesses shuttering. Bloomberg’s eminent solar watcher Jenny Chase said just this week “there will be a price crash, it will hurt, and there will probably be bankruptcies across the industry.”

But the supply and demand issue is not only on the manufacturing side of China’s solar boom. Deploying dozens of gigawatts of solar means unleashing tons of cheap electrons onto a grid that can quickly fall victim to duck/canyon curves where spot prices are essentially zero on a sunny day but ramp up immensely when the sun sets. California was a world leader here, and Chinese provinces like Shandong are increasingly grappling with similar dynamics.

These kinds of difficulties can be seen in data around electricity generation. Despite record expansion in installed solar capacity across China, the growth displayed in generated electricity is mediocre. Solar provided 84.6 TWh in China over the first four months of the year, only 7.5% more than the same period in 2022. And, of course, it’s the energy generation that matters.

Now it just might have been unusually cloudy, and the dust storms and air pollution surely aren’t helping. We know grid connections are lagging as well.

But all of this potential needs to actually start generating electricity fast because climate change isn’t waiting for us. It’s here now. Beyond the storms and droughts and heatwaves, in the electricity sector, climate change is demolishing hydropower production. The past two months have seen China produce the least amount of electricity from hydro since 2015. And, as ever, scale matters. Even with such low production, hydro is about three times the generation from solar, meaning coal makes up the gaps.

The pieces for an energy and economic revolution are assembling, but in China and elsewhere, it’s going to require a lot of effort in designing and planning the future.

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

Mineral Mates

On LIHEAP saved, copper king, and Drax’s ‘betrayal’

JD Vance.
Heatmap Illustration/Getty Images

Current conditions: The snow squalls and cold air headed from the Ohio Valley to the Northeast are coming with winds of up to 55 miles per hour • A “western disturbance,” an extratropical storm that originates in the Mediterranean and travels eastward, is set to arrive in India and bring heavy snow to the Himalayas • Tropical Storm Basyang made landfall over the Philippines this morning, forcing Cebu City to cancel all in-person classes for public school students.

THE TOP FIVE

1. White House kicks off critical minerals summit

Vice President JD Vance delivered a 40-minute speech Wednesday appealing to 54 countries and the European Union to join a trading alliance led by the United States to establish a supply of critical minerals that could meaningfully rival China. The agreement would create a “preferential trade zone” meant to be “protected from disruptions through enforceable price floors.” The effort comes in response to years of export controls from Beijing that have sent the prices of key minerals over which China has near monopolies skyrocketing. “This morning, the Trump administration is proposing a concrete mechanism to return the global critical minerals market to a healthier, more competitive state,” Vance said at the State Department’s inaugural Critical Minerals Ministerial in Washington.

Keep reading...Show less
Blue
Energy

The Super Safe, Super Expensive Nuclear Fuel That’s Making a Comeback

Microreactor maker Antares Nuclear just struck a deal with BWX Technologies to produce TRISO.

TRISO fuel.
Heatmap Illustration/Getty Images, Department of Energy

Long before the infamous trio of accidents at Three Mile Island, Chernobyl, and Fukushima, nuclear scientists started working on a new type of fuel that would make a meltdown nearly impossible. The result was “tri-structural isotropic” fuel, better known as TRISO.

The fuel encased enriched uranium kernels in three layers of ceramic coating designed to absorb the super hot, highly radioactive waste byproducts that form during the atom-splitting process. In theory, these poppyseed-sized pellets could have negated the need for the giant concrete containment vessels that cordon off reactors from the outside world. But TRISO was expensive to produce, and by the 1960s, the cheaper low-enriched uranium had proved reliable enough to become the industry standard around the globe.

Keep reading...Show less
Climate Tech

Lunar Energy Raises $232 Million to Scale Virtual Power Plants

The startup — founded by the former head of Tesla Energy — is trying to solve a fundamental coordination problem on the grid.

A Lunar Energy module.
Heatmap Illustration/Lunar Energy

The concept of virtual power plants has been kicking around for decades. Coordinating a network of distributed energy resources — think solar panels, batteries, and smart appliances — to operate like a single power plant upends our notion of what grid-scale electricity generation can look like, not to mention the role individual consumers can play. But the idea only began taking slow, stuttering steps from theory to practice once homeowners started pairing rooftop solar with home batteries in the past decade.

Now, enthusiasm is accelerating as extreme weather, electricity load growth, and increased renewables penetration are straining the grid and interconnection queue. And the money is starting to pour in. Today, home battery manufacturer and VPP software company Lunar Energy announced $232 million in new funding — a $102 million Series D round, plus a previously unannounced $130 million Series C — to help deploy its integrated hardware and software systems across the U.S.

Keep reading...Show less
Blue