You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
China is installing a jaw-dropping amount of solar panels, but growth in electricity generation from solar is barely increasing. Meanwhile prices are remarkably volatile. What gives?

China’s solar revolution is immense — quite literally world-changing — but that doesn’t mean everything is running smoothly.
Last year China installed a record-breaking amount of solar – 87.4 GW – but that number came amidst zero COVID lockdowns and economic turmoil. This year, things are off to a blazing start, with over 48 GW already installed through April and BloombergNEF projections exceeding 154 GW for 2023. For comparison, total installed capacity in the United States is only 142 GW, meaning China is deploying more solar this year than the U.S. has put up over the past two decades. There’s simply nothing happening that approaches the scale of what China is doing anywhere else on the planet. Many of these panels are part of gargantuan energy bases in China’s remote north and western deserts, but rooftop solar is also growing rapidly.
China isn’t just deploying solar power, it’s expanding factories up and down the supply chain. In September of last year, amid crazy natural gas prices, spiking lithium markets, and concerns about Europe freezing, Bloomberg’s David Fickling sounded an optimistic note by looking closely at the solar supply chain. Polysilicon, ingots, wafers, cells, and modules all have annual production capable of making enough to add over 400 GW, suggesting there was a lot more room to run.
Similar announcements continued the drumbeat of solar growth. LONGi declared in January it intends to spend over $6.5 billion to build the world’s biggest manufacturing site for solar. Tongwei, world-leading polysilicon producer and cell maker, is vertically integrating to capture more of the value from its output, expanding into modules.
The cumulative scale of these investments is something to behold. The IEA’s 2050 Net Zero Emission report has been a benchmark for examining the progress the world is making (or, more often not making) towards deep decarbonization. Just a few weeks ago, Exxon denounced it as unrealistic, saying that it’s “highly unlikely that society would accept the degradation in global standard of living required to permanently achieve a scenario like the IEA NZE.” But the IEA just released a report finding that in terms of solar production, the world is already ahead of their 2030 targets. And not just a little ahead. The 1.1 TW (that’s terrawatts!) of manufacturing capacity is “65% higher than the level required to satisfy deployment needs under the NZE Scenario in 2030.”
To be sure, solar isn’t everything, and while the battery sector is similarly ramping up, other key technologies, like wind, are relatively stagnant. Still, we’re at the point where the question isn’t whether we can make enough solar panels to hit climate goals, but how much we’ll need to reconsider the energy mix in these scenarios and just lean more into solar.
The sufficiency of the global supply chain shouldn’t paper over the fact that the vast majority of this investment and production capacity is taking place in China.
There have been many welcome announcements about investments in clean tech production taking place in the United States and Europe, especially in the wake of last year’s Inflation Reduction Act, but nothing compares to the Chinese renewables industry. Italy’s Enel announced it would build a “massive” solar-panel facility in Sicily — its planned capacity: 3 GW. The new IEA report explicitly defines “major projects” as those over 20 GW a year, all of which so far are located in China.
This pattern of development makes clear the dangers of decoupling from China. The EU can’t come close to hitting its goal of installing 400 GW in the next seven years without relying on Chinese panels. But if Europe and North America boycott Chinese-made solar, then these game-changing investments might evaporate.
However, to paraphrase Mao, the solar revolution is not a dinner party.
All of this construction and production is needed to meet our climate goals, but there remain critical questions about how neatly supply and demand will sync up.
Venture capitalist Dipender Saluja calls the energy transition “the biggest opportunity in the history of the world.” He’s thinking about profits when he says this, but profits don’t arise merely from investing in a growing sector. Cutthroat competition, material constraints, time inconsistency, managerial capacity, logistical difficulties, geopolitical pressures, interest rates, financial stability, global pandemics, and more all mean profits in renewable energy are hard won.
For example, the solar sector saw prices of polysilicon, a critical component of solar panels, collapse from $36 per kilogram in December to below $20 in mid-February, only to see it quickly rebound back to $30 by the middle of February before sliding back down below $20 now. This kind of volatility wreaks havoc on the supply chain.
Indeed, the major manufacturers fear that price pressures and overcapacity are going to lead to businesses shuttering. Bloomberg’s eminent solar watcher Jenny Chase said just this week “there will be a price crash, it will hurt, and there will probably be bankruptcies across the industry.”
But the supply and demand issue is not only on the manufacturing side of China’s solar boom. Deploying dozens of gigawatts of solar means unleashing tons of cheap electrons onto a grid that can quickly fall victim to duck/canyon curves where spot prices are essentially zero on a sunny day but ramp up immensely when the sun sets. California was a world leader here, and Chinese provinces like Shandong are increasingly grappling with similar dynamics.
These kinds of difficulties can be seen in data around electricity generation. Despite record expansion in installed solar capacity across China, the growth displayed in generated electricity is mediocre. Solar provided 84.6 TWh in China over the first four months of the year, only 7.5% more than the same period in 2022. And, of course, it’s the energy generation that matters.
Now it just might have been unusually cloudy, and the dust storms and air pollution surely aren’t helping. We know grid connections are lagging as well.
But all of this potential needs to actually start generating electricity fast because climate change isn’t waiting for us. It’s here now. Beyond the storms and droughts and heatwaves, in the electricity sector, climate change is demolishing hydropower production. The past two months have seen China produce the least amount of electricity from hydro since 2015. And, as ever, scale matters. Even with such low production, hydro is about three times the generation from solar, meaning coal makes up the gaps.
The pieces for an energy and economic revolution are assembling, but in China and elsewhere, it’s going to require a lot of effort in designing and planning the future.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
There has been no new nuclear construction in the U.S. since Vogtle, but the workers are still plenty busy.
The Trump administration wants to have 10 new large nuclear reactors under construction by 2030 — an ambitious goal under any circumstances. It looks downright zany, though, when you consider that the workforce that should be driving steel into the ground, pouring concrete, and laying down wires for nuclear plants is instead building and linking up data centers.
This isn’t how it was supposed to be. Thousands of people, from construction laborers to pipefitters to electricians, worked on the two new reactors at the Plant Vogtle in Georgia, which were intended to be the start of a sequence of projects, erecting new Westinghouse AP1000 reactors across Georgia and South Carolina. Instead, years of delays and cost overruns resulted in two long-delayed reactors 35 miles southeast of Augusta, Georgia — and nothing else.
“We had challenges as we were building a new supply chain for a new technology and then workforce,” John Williams, an executive at Southern Nuclear Operating Company, which owns over 45% of Plant Vogtle, said in a webinar hosted by the environmental group Resources for the Future in October.
“It had been 30 years since we had built a new nuclear plant from scratch in the United States. Our workforce didn’t have that muscle memory that they have in other parts of the world, where they have been building on a more regular frequency.”
That workforce “hasn’t been building nuclear plants” since heavy construction stopped at Vogtle in 2023, he noted — but they have been busy “building data centers and car manufacturing in Georgia.”
Williams said that it would take another “six to 10” AP1000 projects for costs to come down far enough to make nuclear construction routine. “If we were currently building the next AP1000s, we would be farther down that road,” he said. “But we’ve stopped again.”
J.R. Richardson, business manager and financial secretary of the International Brotherhood of Electric Workers Local 1579, based in Augusta, Georgia, told me his union “had 2,000 electricians on that job,” referring to Vogtle. “So now we have a skill set with electricians that did that project. If you wait 20 or 30 years, that skill set is not going to be there anymore.”
Richardson pointed to the potential revitalization of the failed V.C. Summer nuclear project in South Carolina, saying that his union had already been reached out to about it starting up again. Until then, he said, he had 350 electricians working on a Meta data center project between Augusta and Atlanta.
“They’re all basically the same,” he told me of the data center projects. “They’re like cookie cutter homes, but it’s on a bigger scale.”
To be clear, though the segue from nuclear construction to data center construction may hold back the nuclear industry, it has been great for workers, especially unionized electrical and construction workers.
“If an IBEW electrician says they're going hungry, something’s wrong with them,” Richardson said.
Meta’s Northwest Louisiana data center project will require 700 or 800 electricians sitewide, Richardson told me. He estimated that of the IBEW’s 875,000 members, about a tenth were working on data centers, and about 30% of his local were on a single data center job.
When I asked him whether that workforce could be reassembled for future nuclear plants, he said that the “majority” of the workforce likes working on nuclear projects, even if they’re currently doing data center work. “A lot of IBEW electricians look at the longevity of the job,” Richardson told me — and nuclear plants famously take a long, long time to build.
America isn’t building any new nuclear power plants right now (though it will soon if Rick Perry gets his way), but the question of how to balance a workforce between energy construction and data center projects is a pressing one across the country.
It’s not just nuclear developers that have to think about data centers when it comes to recruiting workers — it’s renewables developers, as well.
“We don’t see people leaving the workforce,” said Adam Sokolski, director of regulatory and economic affairs at EDF Renewables North America. “We do see some competition.”
He pointed specifically to Ohio, where he said, “You have a strong concentration of solar happening at the same time as a strong concentration of data center work and manufacturing expansion. There’s something in the water there.”
Sokolski told me that for EDF’s renewable projects, in order to secure workers, he and the company have to “communicate real early where we know we’re going to do a project and start talking to labor in those areas. We’re trying to give them a market signal as a way to say, We’re going to be here in two years.”
Solar and data center projects have lots of overlapping personnel needs, Sokolski said. There are operating engineers “working excavators and bulldozers and graders” or pounding posts into place. And then, of course, there are electricians, who Sokolski said were “a big, big piece of the puzzle — everything from picking up the solar panel off from the pallet to installing it on the racking system, wiring it together to the substations, the inverters to the communication systems, ultimately up to the high voltage step-up transformers and onto the grid.”
On the other hand, explained Kevin Pranis, marketing manager of the Great Lakes regional organizing committee of the Laborers’ International Union of North America, a data center is like a “fancy, very nice warehouse.” This means that when a data center project starts up, “you basically have pretty much all building trades” working on it. “You’ve got site and civil work, and you’re doing a big concrete foundation, and then you’re erecting iron and putting a building around it.”
Data centers also have more mechanical systems than the average building, “so you have more electricians and more plumbers and pipefitters” on site, as well.
Individual projects may face competition for workers, but Pranis framed the larger issue differently: Renewable energy projects are often built to support data centers. “If we get a data center, that means we probably also get a wind or solar project, and batteries,” he said.
While the data center boom is putting upward pressure on labor demand, Pranis told me that in some parts of the country, like the Upper Midwest, it’s helping to compensate for a slump in commercial real estate, which is one of the bread and butter industries for his construction union.
Data centers, Pranis said, aren’t the best projects for his members to work on. They really like doing manufacturing work. But, he added, it’s “a nice large load and it’s a nice big building, and there’s some number of good jobs.”
A conversation with Dustin Mulvaney of San Jose State University
This week’s conversation is a follow up with Dustin Mulvaney, a professor of environmental studies at San Jose State University. As you may recall we spoke with Mulvaney in the immediate aftermath of the Moss Landing battery fire disaster, which occurred near his university’s campus. Mulvaney told us the blaze created a true-blue PR crisis for the energy storage industry in California and predicted it would cause a wave of local moratoria on development. Eight months after our conversation, it’s clear as day how right he was. So I wanted to check back in with him to see how the state’s development landscape looks now and what the future may hold with the Moss Landing dust settled.
Help my readers get a state of play – where are we now in terms of the post-Moss Landing resistance landscape?
A couple things are going on. Monterey Bay is surrounded by Monterey County and Santa Cruz County and both are considering ordinances around battery storage. That’s different than a ban – important. You can have an ordinance that helps facilitate storage. Some people here are very focused on climate change issues and the grid, because here in Santa Cruz County we’re at a terminal point where there really is no renewable energy, so we have to have battery storage. And like, in Santa Cruz County the ordinance would be for unincorporated areas – I’m not sure how materially that would impact things. There’s one storage project in Watsonville near Moss Landing, and the ordinance wouldn’t even impact that. Even in Monterey County, the idea is to issue a moratorium and again, that’s in unincorporated areas, too.
It’s important to say how important battery storage is going to be for the coastal areas. That’s where you see the opposition, but all of our renewables are trapped in southern California and we have a bottleneck that moves power up and down the state. If California doesn’t get offshore wind or wind from Wyoming into the northern part of the state, we’re relying on batteries to get that part of the grid decarbonized.
In the areas of California where batteries are being opposed, who is supporting them and fighting against the protests? I mean, aside from the developers and an occasional climate activist.
The state has been strongly supporting the industry. Lawmakers in the state have been really behind energy storage and keeping things headed in that direction of more deployment. Other than that, I think you’re right to point out there’s not local advocates saying, “We need more battery storage.” It tends to come from Sacramento. I’m not sure you’d see local folks in energy siting usually, but I think it’s also because we are still actually deploying battery storage in some areas of the state. If we were having even more trouble, maybe we’d have more advocacy for development in response.
Has the Moss Landing incident impacted renewable energy development in California? I’ve seen some references to fears about that incident crop up in fights over solar in Imperial County, for example, which I know has been coveted for development.
Everywhere there’s batteries, people are pointing at Moss Landing and asking how people will deal with fires. I don’t know how powerful the arguments are in California, but I see it in almost every single renewable project that has a battery.
Okay, then what do you think the next phase of this is? Are we just going to be trapped in a battery fire fear cycle, or do you think this backlash will evolve?
We’re starting to see it play out here with the state opt-in process where developers can seek state approval to build without local approval. As this situation after Moss Landing has played out, more battery developers have wound up in the opt-in process. So what we’ll see is more battery developers try to get permission from the state as opposed to local officials.
There are some trade-offs with that. But there are benefits in having more resources to help make the decisions. The state will have more expertise in emergency response, for example, whereas every local jurisdiction has to educate themselves. But no matter what I think they’ll be pursuing the opt-in process – there’s nothing local governments can really do to stop them with that.
Part of what we’re seeing though is, you have to have a community benefit agreement in place for the project to advance under the California Environmental Quality Act. The state has been pretty strict about that, and that’s the one thing local folks could still do – influence whether a developer can get a community benefits agreement with representatives on the ground. That’s the one strategy local folks who want to push back on a battery could use, block those agreements. Other than that, I think some counties here in California may not have much resistance. They need the revenue and see these as economic opportunities.
I can’t help but hear optimism in your tone of voice here. It seems like in spite of the disaster, development is still moving forward. Do you think California is doing a better or worse job than other states at deploying battery storage and handling the trade offs?
Oh, better. I think the opt-in process looks like a nice balance between taking local authority away over things and the better decision-making that can be brought in. The state creating that program is one way to help encourage renewables and avoid a backlash, honestly, while staying on track with its decarbonization goals.
The week’s most important fights around renewable energy.
1. Nantucket, Massachusetts – A federal court for the first time has granted the Trump administration legal permission to rescind permits given to renewable energy projects.
2. Harvey County, Kansas – The sleeper election result of 2025 happened in the town of Halstead, Kansas, where voters backed a moratorium on battery storage.
3. Cheboygan County, Michigan – A group of landowners is waging a new legal challenge against Michigan’s permitting primacy law, which gives renewables developers a shot at circumventing local restrictions.
4. Klamath County, Oregon – It’s not all bad news today, as this rural Oregon county blessed a very large solar project with permits.
5. Muscatine County, Iowa – To quote DJ Khaled, another one: This county is also advancing a solar farm, eliding a handful of upset neighbors.