You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
How Equatic solved seawater’s toxic gas problem and delivered a two-for-one solution: removing carbon while producing green hydrogen
Since at least the 1970s, electrochemists have cast their gazes upon the world’s vast, briny seas and wondered how they could harness the endless supply of hydrogen locked within. Though it was technically possible to grab the hydrogen by running an electrical current through the water, the reaction turned the salt in the water into the toxic and corrosive gas chlorine, which made commercializing such a process challenging.
But last year, a startup called Equatic made a breakthrough that not only solves the chlorine problem, but has the potential to deliver a two-for-one solution: commercial hydrogen production and carbon removal. With funding from the Department of Energy’s Advanced Research Projects Agency-Energy, or ARPA-E, the company moved swiftly to scale its innovation, called an “oxygen-selective anode,” from the lab to the factory. On Thursday, it announced it had started manufacturing the anodes at a facility in San Diego.
“I want to emphasize how fast this has moved,” Doug Wicks, a program director at ARPA-E, told me. “They made some pretty large claims about what they could do, so we took it as a high risk project, and really within the first year, they were able to clearly demonstrate that they could make great progress.”
In 2021, Equatic’s co-founders Xin Chen and Gaurav Sant, who are researchers at the University of California, Los Angeles, applied for an ARPA-E grant to work on their idea for a hybrid system that would use seawater electrolysis — sending an electrical current through seawater — to sequester carbon dioxide from the air in the ocean while also producing hydrogen.
Setting aside the chlorine issue for a moment, the process of getting hydrogen out of water is pretty established science. The carbon removal part was new. To achieve it, they would exploit another aspect of the electrolytic reaction: It could separate the seawater into two streams — one very acidic, the other very alkaline and able to easily absorb CO2. If they exposed the alkaline stream to air, it would suck up CO2 like a sponge and convert it into a more stable molecule that couldn’t easily return to the atmosphere. Then they could feed the water back into the sea, enhancing the ocean’s natural carbon pump.
This approach to carbon removal has two big things going for it. First, by driving this reaction through a closed system on land, Equatic can measure the carbon sequestered much more precisely than related methods that are deployed in the open ocean. “You can count what comes in, you can count what goes out, you just have greater control,” David Koweek, the chief scientist at Ocean Visions, a nonprofit that advocates for ocean-based climate solutions, told me. But with that control comes a trade-off, Koweek said. It requires more infrastructure, energy, and operational complexity than something like adding antacids directly to the water. That’s where Equatic’s second advantage could help. Its process produces clean hydrogen, a valuable commodity, which can help defray the cost of the carbon removal.
“We're not just a one way street, only energy in — you actually get some energy out,” Edward Sanders, the company’s chief operating officer, told me. He provided some numbers: For every 2.5 megawatt-hours of electricity Equatic’s system consumes, it can remove 1 metric ton of carbon from the air and produce 1 megawatt-hour worth of energy in the form of hydrogen. The company can either use the hydrogen to help power its operations or sell it. Therefore, the net energy use is more like 1.5 megawatts, he said, which is lower than what a direct air capture plant, for example, requires. (A direct air capture plant using a solid sorbent needs about 2.6 megawatts per ton of CO2 removed, according to the International Energy Agency.) Energy accounts for about 70% of costs, Sanders said.
Equatic was able to prove its concept out in two small pilot projects deployed in the Los Angeles harbor and in Singapore that each removed about 100 kilograms of carbon from the air, and produced just a few kilograms of hydrogen, per day. But because of the chlorine issue, the two plants were expensive, using bespoke, corrosion-resistant materials. Sanders told me it would cost on the order of millions of dollars to manage the chlorine gas at scale. The company would need to find a more economic solution.
The formation of chlorine in seawater electrolysis is a problem that has stumped scientists for so long that it has split the electrochemists into two camps — those who still believe it’s solvable, and those who think it makes more sense to just purify the water first.
When I asked Chen what the day-to-day work of trying to overcome this looked like, he said it was materials science research. He needed to find the right combination of catalysts to make an anode — a sheet of conductive, positively-charged metal — that, when used in electrolysis, would screen out the salt and not allow it to react. “It’s like Gandalf holding the way to tell chlorine, ‘you shall not pass.’” he said. “That’s essentially how it works. Only water molecules can pass through.”
Chen and Sant were awarded $1 million from ARPA-E for the research in 2022. About a year later, they felt they were on to something. As with most scientific “breakthroughs,” there was no single moment of discovery — Chen was not even the first to do what he did, which was to use manganese oxide. “There’s a lot of literature that indicates it’s doable,” he told me. “There’s pioneering work by other scientists from almost 30 years ago, but they didn’t pursue it far enough because I don’t think the opportunity was right at that time.”
What Chen did was push to find an iteration that was more effective, durable, and affordable. He ultimately landed on a design that produced less than one part per million of chlorine — lower than the amount in drinking water — and performed reliably for more than 20,000 hours of testing. When he showed his progress to Wicks at ARPA-E, the agency was impressed enough to grant the scientists an additional $2 million. That funding helped them get their first production line up and running.
The facility in San Diego will be able to produce 4,000 anodes per year to start, and is expected to operate at full capacity by the end of 2024. It will produce the anodes for Equatic’s first demonstration-scale project, a new plant in Singapore designed to remove 10 metric tons of CO2 and produce 300 kilograms of hydrogen per day — 100 times larger than the pilot version. Equatic also has plans to build an even bigger plant in Quebec that can remove 300 tons per day. That’s about three times the capacity of Climeworks’ Mammoth plant, the world’s largest direct air capture plant operating today.
The manufacturing line will also be able to refurbish the anodes after about three years of use, simply by applying a new layer of catalysts. Wicks of ARPA-E told me this was a “breakthrough coating technique” that will allow the company to really decrease costs.
When I asked Wicks what he sees as the next milestones for Equatic, what will determine whether it will be successful, he said a lot was riding on the scale up in Singapore and Canada. The company has already signed an agreement to deliver 2,100 metric tons of hydrogen to Boeing and remove 62,000 metric tons of CO2 from the air on the aerospace giant’s behalf. The companies have not made the price of the deal public.
One challenge ahead will also be navigating the permitting environment in the different countries. Koweek of Ocean Visions told me that this kind of seawater chemistry modification was “relatively benign,” but he said there were still risks that had to be characterized.
In the meantime, Chen isn’t done trying to optimize his anode in the lab. I asked him how he felt after his initial discovery — were you excited? Did you celebrate?
“Not really,” he replied. “So I’m very excited inside. But I was generally thinking about it, can we push it further?”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Give the people what they want — big, family-friendly EVs.
The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.
I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.
The L.A. show is one the major events on the yearly circuit of car shows, where the car companies traditionally reveal new models for the media and show off their whole lineups of vehicles for the public. Given that California is the EV capital of America, carmakers like to talk up their electric models here.
Hyundai’s brand partner, Kia, debuted a GT performance version of its EV9, adding more horsepower and flashy racing touches to a giant family SUV. Jeep reminded everyone of its upcoming forays into full-size and premium electric SUVs in the form of the Recon and the Wagoneer S. VW trumpeted the ID.Buzz, the long-promised electrified take on the classic VW Microbus that has finally gone on sale in America. The VW is the quirkiest of the lot, but it’s a design we’ve known about since 2017, when the concept version was revealed.
Boring isn’t the worst thing in the world. It can be a sign of a maturing industry. At auto shows of old, long before this current EV revolution, car companies would bring exotic, sci-fi concept cars to dial up the intrigue compared to the bread-and-butter, conservatively styled vehicles that actually made them gobs of money. During the early EV years, electrics were the shiny thing to show off at the car show. Now, something of the old dynamic has come to the electric sector.
Acura and Chrysler brought wild concepts to Los Angeles that were meant to signify the direction of their EVs to come. But most of the EVs in production looked far more familiar. Beyond the new hulking models from Hyundai and Kia, much of what’s on offer includes long-standing models, but in EV (Chevy Equinox and Blazer) or plug-in hybrid (Jeep Grand Cherokee and Wrangler) configurations. One of the most “interesting” EVs on the show floor was the Cybertruck, which sat quietly in a barely-staffed display of Tesla vehicles. (Elon Musk reveals his projects at separate Tesla events, a strategy more carmakers have begun to steal as a way to avoid sharing the spotlight at a car show.)
The other reason boring isn’t bad: It’s what the people want. The majority of drivers don’t buy an exotic, fun vehicle. They buy a handsome, spacious car they can afford. That last part, of course, is where the problem kicks in.
We don’t yet know the price of the Ioniq 9, but it’s likely to be in the neighborhood of Kia’s three-row electric, the EV9, which starts in the mid-$50,000s and can rise steeply from there. Stellantis’ forthcoming push into the EV market will start with not only pricey premium Jeep SUVs, but also some fun, though relatively expensive, vehicles like the heralded Ramcharger extended-range EV truck and the Dodge Charger Daytona, an attempt to apply machismo-oozing, alpha-male muscle-car marketing to an electric vehicle.
You can see the rationale. It costs a lot to build a battery big enough to power a big EV, so they’re going to be priced higher. Helpfully for the car brands, Americans have proven they will pay a premium for size and power. That’s not to say we’re entering an era of nothing but bloated EV battleships. Models such as the overpowered electric Dodge Charger and Kia EV9 GT will reveal the appetite for performance EVs. Smaller models like the revived Chevy Bolt and Kia’s EV3, already on sale overseas, are coming to America, tax credit or not.
The question for the legacy car companies is where to go from here. It takes years to bring a vehicle from idea to production, so the models on offer today were conceived in a time when big federal support for EVs was in place to buoy the industry through its transition. Now, though, the automakers have some clear uncertainty about what to say.
Chevy, having revealed new electrics like the Equinox EV elsewhere, did not hold a media conference at the L.A. show. Ford, which is having a hellacious time losing money on its EVs, used its time to talk up combustion vehicles including a new version of the palatial Expedition, one of the oversized gas-guzzlers that defined the first SUV craze of the 1990s.
If it’s true that the death of federal subsidies will send EV sales into a slump, we may see messaging from Detroit and elsewhere that feels decidedly retro, with very profitable combustion front-and-center and the all-electric future suddenly less of a talking point. Whatever happens at the federal level, EVs aren’t going away. But as they become a core part of the car business, they are going to get less exciting.
Current conditions: Parts of southwest France that were freezing last week are now experiencing record high temperatures • Forecasters are monitoring a storm system that could become Australia’s first named tropical cyclone of this season • The Colorado Rockies could get several feet of snow today and tomorrow.
This year’s Atlantic hurricane season caused an estimated $500 billion in damage and economic losses, according to AccuWeather. “For perspective, this would equate to nearly 2% of the nation’s gross domestic product,” said AccuWeather Chief Meteorologist Jon Porter. The figure accounts for long-term economic impacts including job losses, medical costs, drops in tourism, and recovery expenses. “The combination of extremely warm water temperatures, a shift toward a La Niña pattern and favorable conditions for development created the perfect storm for what AccuWeather experts called ‘a supercharged hurricane season,’” said AccuWeather lead hurricane expert Alex DaSilva. “This was an exceptionally powerful and destructive year for hurricanes in America, despite an unusual and historic lull during the climatological peak of the season.”
AccuWeather
This year’s hurricane season produced 18 named storms and 11 hurricanes. Five hurricanes made landfall, two of which were major storms. According to NOAA, an “average” season produces 14 named storms, seven hurricanes, and three major hurricanes. The season comes to an end on November 30.
California Gov. Gavin Newsom announced yesterday that if President-elect Donald Trump scraps the $7,500 EV tax credit, California will consider reviving its Clean Vehicle Rebate Program. The CVRP ran from 2010 to 2023 and helped fund nearly 600,000 EV purchases by offering rebates that started at $5,000 and increased to $7,500. But the program as it is now would exclude Tesla’s vehicles, because it is aimed at encouraging market competition, and Tesla already has a large share of the California market. Tesla CEO Elon Musk, who has cozied up to Trump, called California’s potential exclusion of Tesla “insane,” though he has said he’s okay with Trump nixing the federal subsidies. Newsom would need to go through the State Legislature to revive the program.
President-elect Donald Trump said yesterday he would impose steep new tariffs on all goods imported from China, Canada, and Mexico on day one of his presidency in a bid to stop “drugs” and “illegal aliens” from entering the United States. Specifically, Trump threatened Canada and Mexico each with a 25% tariff, and China with a 10% hike on existing levies. Such moves against three key U.S. trade partners would have major ramifications across many sectors, including the auto industry. Many car companies import vehicles and parts from plants in Mexico. The Canadian government responded with a statement reminding everyone that “Canada is essential to U.S. domestic energy supply, and last year 60% of U.S. crude oil imports originated in Canada.” Tariffs would be paid by U.S. companies buying the imported goods, and those costs would likely trickle down to consumers.
Amazon workers across the world plan to begin striking and protesting on Black Friday “to demand justice, fairness, and accountability” from the online retail giant. The protests are organized by the UNI Global Union’s Make Amazon Pay Campaign, which calls for better working conditions for employees and a commitment to “real environmental sustainability.” Workers in more than 20 countries including the U.S. are expected to join the protests, which will continue through Cyber Monday. Amazon’s carbon emissions last year totalled 68.8 million metric tons. That’s about 3% below 2022 levels, but more than 30% above 2019 levels.
Researchers from MIT have developed an AI tool called the “Earth Intelligence Engine” that can simulate realistic satellite images to show people what an area would look like if flooded by extreme weather. “Visualizing the potential impacts of a hurricane on people’s homes before it hits can help residents prepare and decide whether to evacuate,” wrote Jennifer Chu at MIT News. The team found that AI alone tended to “hallucinate,” generating images of flooding in areas that aren’t actually susceptible to a deluge. But when combined with a science-backed flood model, the tool became more accurate. “One of the biggest challenges is encouraging people to evacuate when they are at risk,” said MIT’s Björn Lütjens, who led the research. “Maybe this could be another visualization to help increase that readiness.” The tool is still in development and is available online. Here is an image it generated of flooding in Texas:
Maxar Open Data Program via Gupta et al., CVPR Workshop Proceedings. Lütjens et al., IEEE TGRS
A new installation at the Centre Pompidou in Paris lets visitors listen to the sounds of endangered and extinct animals – along with the voice of the artist behind the piece, the one and only Björk.
How Hurricane Helene is still putting the Southeast at risk.
Less than two months after Hurricane Helene cut a historically devastating course up into the southeastern U.S. from Florida’s Big Bend, drenching a wide swath of states with 20 trillion gallons of rainfall in just five days, experts are warning of another potential threat. The National Interagency Fire Center’s forecast of fire-risk conditions for the coming months has the footprint of Helene highlighted in red, with the heightened concern stretching into the new year.
While the flip from intense precipitation to wildfire warnings might seem strange, experts say it speaks to the weather whiplash we’re now seeing regularly. “What we expect from climate change is this layering of weather extremes creating really dangerous situations,” Robert Scheller, a professor of forestry and environmental resources at North Carolina State University, explained to me.
Scheuller said North Carolina had been experiencing drought conditions early in the year, followed by intense rain leading up to Helene’s landfall. Then it went dry again — according to the U.S. Drought Monitor, much of the state was back to some level of drought condition as of mid-November. The NIFC forecast report says the same is true for much of the region, including Florida, despite its having been hit by Hurricane Milton soon after Helene.
That dryness is a particular concern due to the amount of debris left in Helene’s wake — another major risk factor for fire. The storm’s winds, which reached more than 100 miles per hour in some areas, wreaked havoc on millions of acres of forested land. In North Carolina alone, the state’s Forest Service estimates over 820,000 acres of timberland were damaged.
“When you have a catastrophic storm like [Helene], all of the stuff that was standing upright — your trees — they might be snapped off or blown over,” fire ecologist David Godwin told me. “All of a sudden, that material is now on the forest floor, and so you have a really tremendous rearrangement of the fuels and the vegetation within ecosystems that can change the dynamics of how fire behaves in those sites.”
Godwin is the director of the Southern Fire Exchange for the University of Florida, a program that connects wildland firefighters, prescribed burners, and natural resources managers across the Southeast with fire science and tools. He says the Southeast sees frequent, unplanned fires, but that active ecosystem management helps keep the fires that do spark from becoming conflagrations. But an increase like this in fallen or dead vegetation — what Godwin refers to as fire “fuel” — can take this risk to the next level, particularly as it dries out.
Godwin offered an example from another storm, 2018’s Hurricane Michael, which rapidly intensified before making landfall in Northern Florida and continuing inland, similar to Hurricane Helene. In its aftermath, there was a 10-fold increase in the amount of fuel on the ground, with 72 million tons of timber damaged in Florida. Three years later, the Bertha Swamp Road Fire filled the storm’s Florida footprint with flames, which consumed more than 30,000 acres filled with dried out forest fuel. One Florida official called the wildfire the “ghost” of Michael, nodding to the overlap of the impacted areas and speaking to the environmental threat the storm posed even years later.
Not only does this fuel increase the risk of fire, it changes the character of the fires that do ignite, Godwin said. Given ample ground fuel, flame lengths can grow longer, allowing them to burn higher into the canopy. That’s why people setting prescribed fires will take steps like raking leaf piles, which helps keep the fire intensity low.
These fires can also produce more smoke, Godwin said, which can mix with the mountainous fog in the region to deadly effect. According to the NIFC, mountainous areas incurred the most damage from Helene, not only due to downed vegetation, but also because of “washed out roads and trails” and “slope destabilization” from the winds and rain. If there is a fire in these areas, all these factors will also make it more challenging for firefighters to address it, the report adds.
In addition to the natural debris fire experts worry about, Helene caused extensive damage to the built environment, wrecking homes, businesses, and other infrastructure. Try imagining four-and-a-half football fields stacked 10 feet tall with debris — that’s what officials have removed so far just in Asheville, North Carolina. In Florida’s Treasure Island, there were piles 50 feet high of assorted scrap materials. Officials have warned that some common household items, such as the lithium-ion batteries used in e-bikes and electric vehicles, can be particularly flammable after exposure to floodwaters. They are also advising against burning debris as a means of managing it due to all the compounding risks.
Larry Pierson, deputy chief of the Swannanoa Fire Department in North Carolina, told Blueridge Public Radio that his department’s work has “grown exponentially since the storm.” While cooler, wetter winter weather could offer some relief, Scheuller said the area will likely see heightened fire behavior for years after the storm, particularly if the swings between particularly wet and particularly dry periods continue.
Part of the challenge moving forward, then, is to find ways to mitigate risk on this now-hazardous terrain. For homeowners, that might mean exercising caution when dealing with debris and considering wildfire risk as part of rebuilding plans, particularly in more wooded areas. On a larger forest management scale, this means prioritizing safe debris collection and finding ways to continue the practice of prescribed burns, which are utilized more in the Southeast than in any other U.S. region. Without focused mitigation efforts, Godwin told me the area’s overall fire outlook would be much different.
“We would have a really big wildfire issue,” he said, “perhaps even bigger than what we might see in parts of the West.”