Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Electric Vehicles

The Arguments Against EVs Are All Bad

Growing pains aren’t dealbreakers.

A car salesman showing off an engine.
Heatmap Illustration/Getty Images

Suppose you’d never heard of the gas-powered car. One day, someone comes along to evangelize a new Honda CR-V as the hottest thing in technology. You might rightfully ask: Are you serious? You want me to put my family inside a box propelled by petroleum explosions? I’m supposed to maintain a machine made of thousands of moving parts ready to fail at any time, and that needs a fossil fuel imported largely from hostile nations?

Hank Green of YouTube fame recently posted such a thought experiment on Threads to point out the power of the status quo. After a century of our burning gasoline to get around, the frankly bizarre nature of internal combustion has become invisible. Instead, it is the ascendant electric car that is met by the doubt and derision that scoffs at anything new and different.

I’m not going to tell you EVs don’t have growing pains. But the big arguments against them aren’t as impressive as they sound.

Some anti-EV complaints are little more than bad-faith attacks drummed up by petroleum partisans and others with an ax to grind against electrification. For example, there is the notion that EVs aren’t actually better for the climate because they produce more emissions than gas cars. Opponents adore this one, since it would negate the rationale for electrifying the car fleet.

Except, it’s wrong. It may be true that building an EV requires slightly more upfront carbon emissions, which are caused by mining the essential materials and making the battery. However, combustion cars more than make up the difference by burning fossil fuels, and spewing a constant stream of climate pollution, for as many years as they run. Meanwhile, an EV gets cleaner and cleaner as the grid that supplies its electricity adds more and more renewables to its makeup. You’d basically have to burn nothing but coal for EVs to be worse over their lifespans.

Get one great climate story in your inbox every day:

* indicates required
  • What about the annoyance of EV ownership? Some antagonists suggest driving electric is like using cloth diapers: an onerous, soul-sucking inconvenience taken on for the sake of saving the planet. Don’t believe it. EV life has its quirks, sure. On the other hand, I’ve covered the numerous ways that EVs are just plain better than gas cars, which includes the impressive zoom off the starting line, the ability to use your garage as a refueling station, and much more.

    Range anxiety, held up as a dealbreaker for some buyers considering an EV, isn’t the problem you think it is. The fear is essentially nil for people who can charge an EV at home: You’ll wake up each morning with 80 or 90 percent of battery capacity, which is more than enough for all your daily driving needs. Finding a public charger is mainly a problem for longer trips, and the growing number of fast-charging stations means there’ll be one. Furthermore, battery ranges are getting longer and charging times are getting shorter. As this trend continues, range anxiety is quickly diminishing, as is the convenience difference between gas and electric.

    Some naysayers say it’s impossible for an electric vehicle to meet their needs. I get it. It’d be easy to look at maps of U.S. charging infrastructure and conclude that if you don’t live in one of the big metropolitan areas where plugs are abundant, then EV ownership is impossible or impractical. Well, not necessarily.

    Yes, those who reside in truly rural parts of America, and drive many miles far from the interstate highway system, ought to wait on going electric. But you don’t need to live in Los Angeles to live with an EV. Remember, if you can charge at home, then your house supplies the energy for the vast majority of your driving. Fast chargers now line the major highways even in states with low EV ownership to date, so you could drive a long distance as long as it’s not into the hinterlands. Having an EV especially makes sense in a two-car family where the other car is, say, a traditional hybrid. Simply accomplish most of your local driving on cleaner, electric power, and take out the Prius if you’re driving to a far-flung national park.

    EVs are too expensive, they say. That one is true. However, while the federal tax credits for electric vehicles were already perplexing and are getting worse, they exist. If you can manage to navigate them, it is still possible to save $7,500 up front on buying an EV, an amount that brings them much closer to their gasoline counterparts. And that’s before the credits and rebates available in many states for buying zero-emissions cars or installing home charging stations. It also doesn’t include the savings from reduced routine maintenance and low fuel costs, both of which make electrics cheaper to operate as the years go by.

    In addition, those high sticker prices won’t stay high forever. A lot of the EVs that have hit the market so far are high-end, and their eye-popping MSRP helps carmakers cover the costs of designing new all-electric platforms and building big batteries. As the electric market matures, more entry-level models will emerge, made possible in part by the cost of batteries falling as the industry reaches a bigger scale.

    There is a long list of alleged reasons why electrification supposedly cannot work across an entire country or the world. Among them: Battery materials are scarce, and must be mined in problematic areas. The grid supposedly can’t handle the extra demand (it can), and we can’t put enough renewable energy on the grid for EVs to make a maximum climate impact. Charging infrastructure is woefully inadequate.

    These all are issues to be sorted, surely. The fundamental problem with this kind of anti-electric rhetoric around them, though, is that it suggests such problems are unsolvable. They’re not. New sources for raw materials are being found, such as the giant lithium deposit discovered this year near the Oregon-Nevada border. The ascendant EV battery recycling industry has the potential to recover most of the precious metals from spent cells. In the longer term, scientists are at work on novel chemistries that could use more abundant and easily obtained materials to make the batteries of tomorrow from something other than lithium, cobalt, and nickel.

    The electricity grid does need to be improved, with more high-capacity transmission lines and energy storage solutions to allow for saving solar and wind energy for later. Frankly, though, our decaying infrastructure needs hardening anyway, and the EV revolution may help provide the push to get such projects past political gridlock. In the meantime, there are available smart solutions such as trying to line up energy demand with renewable supply — for example, by charging all our new EVs in midday when the sun is shining.

    Maybe the people who say those solutions are too expensive or too difficult simply have no vision. After all, many of them would be out there stumping about the power of American ingenuity — if that ingenuity were in pursuit of a technology that profited them or appealed to their voters. While the EV transition will be hard, what would be even harder is giving up and living with the effects of unmitigated climate change, or trying to realize 11th-hour miracle solutions to save the planet like direct air capture.

    The only truly compelling argument against EVs is that they don’t go far enough. They are still cars, after all, and a society that drives electric cars still wastes its land on parking lots and kills thousands of its citizens each year through crashes and collisions with other vehicles, bikes, and pedestrians. Sticking with cars just because they fit into the civilization we’ve built is a missed opportunity to build a walkable, bikeable, better future. There’s no arguing with that one.

    Andrew Moseman profile image

    Andrew Moseman

    Andrew Moseman has covered science, technology, and transportation for publications such as The Atlantic, Inverse, Insider, Outside, and MIT Technology Review. He was previously digital director of Popular Mechanics and now serves as online communications editor at Caltech. He is based in Los Angeles.


    AM Briefing: Google’s Geothermal Deal

    On the tech giant’s geothermal deal, Musk’s pay package, and the climate costs of war

    Google’s Plan to Power Data Centers with Geothermal
    Heatmap Illustration/Getty Images

    Current conditions: Extreme flooding has displaced hundreds of people in Chile • Schools and tourist sites are closed across Greece due to dangerously high temperatures • A heat wave is settling over the Midwest and could last through next weekend.


    1. Tesla shareholders vote on Musk’s pay package

    We’ll know today whether Tesla CEO Elon Musk gets to keep his $56 billion pay package. The compensation deal was originally approved in 2018, but a Delaware court voided it earlier this year, saying it was “deeply flawed” and that shareholders weren’t made fully aware of its details. So the board is letting shareholders have their say once more. Remote voting closed at midnight last night. This morning Musk “leaked” the early vote results, claiming the resolution – along with a ballot measure to move the company from Delaware to Texas – was passing by a wide margin.

    Keep reading...Show less

    There’s Gold in That There Battery Waste

    Aepnus is taking a “fully circular approach” to battery manufacturing.

    Lithium ion batteries.
    Heatmap Illustration/Getty Images

    Every year, millions of tons of sodium sulfate waste are generated throughout the lithium-ion battery supply chain. And although the chemical compound seems relatively innocuous — it looks just like table salt and is not particularly toxic — the sheer amount that’s produced via mining, cathode production, and battery recycling is a problem. Dumping it in rivers or oceans would obviously be disruptive to ecosystems (although that’s generally what happens in China), and with landfills running short on space, there are fewer options there, as well.

    That is where Aepnus Technology is attempting to come in. The startup emerged from stealth today with $8 million in seed funding led by Clean Energy Ventures and supported by a number of other cleantech investors, including Lowercarbon Capital and Voyager Ventures. The company uses a novel electrolysis process to convert sodium sulfate waste into sodium hydroxide and sulfuric acid, which are themselves essential chemicals for battery production.

    Keep reading...Show less

    What 2 Years of High Interest Rates Have Done to Clean Energy

    The end may be in sight, but it’s not here yet.

    Jerome Powell.
    Heatmap Illustration/Getty Images

    Are interest rates going to go down? The market will have to wait.

    Following a Tuesday report showing steady consumer prices in May and prices overall only rising 3.3% in the past year, the Federal Reserve held steady on interest rates, releasing a projection Wednesday showing just one rate cut this year.

    Keep reading...Show less