You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
And four more things we learned from Tesla’s Q1 earnings call.
Tesla doesn’t want to talk about its cars — or at least, not about the cars that have steering wheels and human drivers.
Despite weeks of reports about Tesla’s manufacturing and sales woes — price cuts, recalls, and whether a new, cheaper model would ever come to fruition — CEO Elon Musk and other Tesla executives devoted their quarterly earnings call largely to the company's autonomous driving software. Musk promised that the long-awaited program would revolutionize the auto industry (“We’re putting the actual ‘auto’ in automobile,” as he put it) and lead to the “biggest asset appreciation in history” as existing Tesla vehicles got progressively better self-driving capabilities.
In other Tesla news, car sales are falling, and a new, cheaper vehicle will not be constructed on an all-new platform and manufacturing line, which would instead by reserved for a from-the-ground-up autonomous vehicle.
Here are five big takeaways from the company's earnings and conference call.
The company reported that its “total automotive revenues” came in at $17.4 billion in the first quarter, down 13% from a year ago. Its overall revenues of $21.3 billion, meanwhile, were down 9% from a year ago. The earnings announcement included a number of explanations for the slowdown, which was even worse than Wall Street analysts had expected.
Among the reasons Tesla cited for the disappointing results were arson at its Berlin factory, the obstruction to Red Sea shipping due to Houthi attacks from Yemen, plus a global slowdown in electric vehicle sales “as many carmakers prioritize hybrids over EVs.” The combined effects of these unfortunate events led the company to undertake a well-publicized series of price cuts and other sweeteners for buyers, which dug further into Tesla’s bottom line. Tesla’s chief financial officer, Vaibhav Taneja, said that the company’s free cash flow was negative more than $2 billion, largely due to a “mismatch” between its manufacturing and actual sales, which led to a buildup of car inventory.
The bad news was largely expected — the company’s shares had fallen 40% so far this year leading up to the first quarter earnings, and the past few weeks have featured a steady drumbeat of bad news from the automaker, including layoffs and a major recall. The company’s profits of $1.1 billion were down by more than 50%, short of Wall Street’s expectations — and yet still, Tesla shares were up more than 10% in after-hours trading following the shareholder update and earnings call.
The strange thing about Tesla is that it makes the overwhelming majority of its money from selling cars, but has become the world’s most valuable car company thanks to investors thinking that it’s more of an artificial intelligence company. It’s not uncommon for Tesla CEO Elon Musk and his executives to start talking about their Full Self-Driving technology and autonomous driving goals when the company’s existing business has hit a rough patch, and today was no exception.
Tesla’s value per share was about 33 times its earnings per share by the end of trading on Monday, comparable to how investors evaluate software companies that they expect to grow quickly and expand profitability in the future. Car companies, on the other hand, tend to have much lower valuations compared to their earnings — Ford’s multiple is 12, for instance, and GM’s is 6.
Musk addressed this gap directly on the company’s earnings call. He said that Tesla “should be thought of as an AI/robotics company,” and that “if you value Tesla as an auto company, that’s the wrong framework.” To emphasize just how much the company is pivoting around its self-driving technology, Musk said that “if somebody believes Tesla is not going to solve autonomy they should not be an investor in the company.”
One reason investors value Tesla so differently relative to its peers is that they do, actually, expect the company will make a lot of money using artificial intelligence. No doubt with that in mind, executives made sure to let everyone know that its artificial intelligence spending was immense: The company’s free cash flow may have been negative more than $2 billion, but $1 billion of that was in spending on AI infrastructure. The company also said that it had “increased AI training compute by more than 130%” in the first quarter.
“The future is not only electric, but also autonomous,” the company’s investor update said. “We believe scaled autonomy is only possible with data from millions of vehicles and an immense AI training cluster. We have, and continue to expand, both.”
Musk described the company’s FSD 12 self-driving software as “profound” and said that “it’s only a matter of time before we exceed the reliability of humans, and not much time at that.”
The biggest open question about Tesla is what would happen with its long-promised Model 2, a sub-$30,000 EV that would, in theory, have mass appeal. Reuters reported that the project had been cancelled and that Tesla was instead devoting its resources to another long-promised project, a self-driving ride-hailing vehicle called the “robotaxi.”
Musk tweeted that Reuters was “lying” but never directly denied the report or identified what was wrong with it, instead saying that the robotaxi would be unveiled in August. He later followed up to say that “going balls to the wall for autonomy is a blindingly obvious move. Everything else is like variations on a horse carriage.”
Before the call, Wall Street analysts were begging for a confirmation that newer, cheaper models besides a robotaxi were coming.
“If Tesla does not come out with a Model 2 the next 12 to 18 months, the second growth wave will not come,” Wedbush Securities analyst Dan Ives wrote in a note last week. “Musk needs to recommit to the Model 2 strategy ALONG with robotaxis but it CANNOT be solely replaced by autonomy.”
Anyone who expected to get their answers on today’s call, though, was likely kidding themselves.
Tesla announced today it had updated its planned vehicle line-up to “accelerate the launch of new models ahead of our previously communicated start of production in the second half of 2025,” and that “these new vehicles, including more affordable models, will utilize aspects of the next generation platform as well as aspects of our current platforms.” Musk added on the company’s earnings call that a new model would not be “contingent on any new factory or massive new production line.”
Some analysts attributed the share pricing popping after hours to this line, although it’s unclear just how new this new car would be.
Tesla’s shareholder update indicated that any new, cheaper vehicle would not necessarily be entirely new nor unlock massive new savings through an all-new production process. “This update may result in achieving less cost reduction than previously expected but enables us to prudently grow our vehicle volumes in a more capex efficient manner during uncertain times,” the update said.
Of the robotaxi, meanwhile, the company said it will “continue to pursue a revolutionary ‘unboxed’ manufacturing strategy,” indicating that just the ride-hailing vehicle would be built entirely on a new platform.
Musk also discussed how a robotaxi network could work, saying that it would be a combination of Tesla-operated robotaxis and owners putting their own cars into the ride-hailing fleet. When asked directly about its schedule for a $25,000 car, Musk quickly pivoted to discussing autonomy, saying that when Teslas are able to self-drive without supervision, it will be “the biggest asset appreciation in history,” as existing Teslas became self-driving.
When asked whether any new vehicles would “tweaks” or “new models,” Musk dodged the question, saying that they had said everything they had planned to say on the new cars.
One bright spot on the company’s numbers was the growth in its sales of energy systems, which are tilting more and more toward the company’s battery offerings.
Tesla said it deployed just over 4 gigawatts of energy storage in the first quarter of the year, and that its energy revenue was up 7% from a year ago. Profits from the business more than doubled.
Tesla’s energy business is growing faster than its car business, and Musk said it will continue to grow “significantly faster than the car business” going forward.
Revenues from “services and others,” which includes the company’s charging network, was up by a quarter, as more and more other electric vehicle manufacturers adopt Tesla’s charging standard.
Another speculative Tesla project is Optimus, which the company describes as a “general purpose, bi-pedal, humanoid robot capable of performing tasks that are unsafe, repetitive or boring.” Like many robotics projects, the most the public has seen of Optimus has been intriguing video content, but Musk said that it was doing “factory tasks in the lab” and that it would be in “limited production” in a factory doing “useful tasks” by the end of this year. External sales could begin “by the end of next year,” Musk said.
But as with any new Tesla project, these dates may be aspirational. Musk described them as “just guesses,” but also said that Optimus could “be more valuable than everything else combined.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Long-duration storage is still an awkward fit in most U.S. electricity markets.
It’s hard to imagine a decarbonized grid without batteries that can last longer — far longer — than the four hours today’s grid-scale, lithium-ion batteries can pump power onto the grid. But who’s going to pay for it?
That’s the question developers and researchers are puzzling over as the U.S. electricity grid struggles to replace aging generation and transmission infrastructure. At the same time, forecast demand for electricity is surging thanks to electrification of transportation and home heating, factory construction, and, of course, data centers. With solar (still) coming online, there’s a need to spread out the plentiful power generated in the middle of the day — or even year — across other hours and seasons.
In much of the country, electricity markets are set up to optimize the delivery of energy on very short time frames at the lowest cost, and to ensure ancillary services that can keep the grid stable from second to second. Then there are capacity markets, where electricity generators receive payments in exchange for their future availability in order to maintain long-term reliability.
Molly Robertson, an associate fellow studying electricity market design at Resources for the Future, a nonprofit research institution, is skeptical about how long-duration energy storage can fit into this market. “If we think about the market as compensating for those three things, there’s two questions,” she told me. “One is, is the market covering all of the things that the grid needs? And are there enough products that are being purchased that actually cover all of the needs of the grid?”
Long-duration batteries fit awkwardly into that equation. “Right now, I think you don’t see long duration storage because there are resources that are more cost competitive” for what existing wholesale markets reward, Robertson told me.
But the grid today may not be the grid of tomorrow — or at least that’s the argument of the long-duration energy storage industry.
“This energy transition was always going to be necessary around this time frame, regardless of the decarbonization agenda or anything like that,” Jon Norman, the president of Hydrostor, a Canadian company developing large-scale, compressed air batteries, told me. “Most of the infrastructure was built in the 80s and 90s and it’s hitting its natural end-of-life cycle. So these traditional coal-fired power plants, gas-fired power plants would either need to be rebuilt or new infrastructure built.”
“There’s no way of avoiding that,” he added.
Norman, of course, thinks that long-duration storage is a “good replacement for a lot of those assets.” Large-scale batteries like Hydrostor’s can store surplus electricity from when renewables are producing more than the grid needs, and then discharge that energy when needed — and for far longer than today’s batteries.
Lithium-ion is the dominant chemistry for battery energy storage systems today, thanks to its high energy density and ability to withstand many charging and discharging cycles, the same factors that have made it the default choice for electric cars. Because of both lithium-ion’s physical limits and the specific needs of the grid, however, the vast majority of grid-scale systems top out at four hours of discharge.
From a grid planning perspective, the difference between those batteries and long-duration storage, which can discharge for 10 or more hours at a time, means that the latter “can reliably replace” existing fossil fuel generation, Norman said. That makes Hydrostor’s batteries less like an “energy” product and more like capacity — a role typically filled by coal and natural gas, which get paid handsomely for doing so.
Restructured electricity markets work fine at wholesale electricity pricing for infrastructure that already exists, Norman argued. In the late 1990s and early 2000s, when electricity markets were deregulated, “you didn’t need a lot of buildout,” he said. Instead, the question was, “How can we most efficiently dispatch this stuff? How do we send the right signals to the generators?”
But sudden demand growth and the ravages of time have brought a new set of challenges. “The issue that we’ve seen over the past 10 years — and it’s coming to a head now — is, how do you build new capacity? Nobody’s really investing in these markets because there’s a real disconnect between those power market signals that are in real time and short term and the long-run cost of building infrastructure,” Norman told me.
Relying on market forces to come up with new capacity has not worked, he said. “This experiment has failed.”
Management of the PJM Interconnection, the country’s largest electricity market, has practically had to beg developers to bring more firm power onto the grid. It’s also overhauling its internal processes to get projects approved for interconnection more quickly.
In the meantime, as capacity payments and reliability worries continue to spiral, the market’s managers have introduced a pair of proposals that would subject new large sources of electricity demand (i.e. data centers) to mandatory shutoffs and allow utilities to get back into building generation. The former would essentially undo the foundational “duty to serve” model that’s been at the heart of electricity policy for over a century, and the other would reverse decades of electricity market deregulation and restructuring.
Suppliers and customers alike revolted against the idea of mandatory curtailment, and both proposals are now on hold. Whether or not either is ever realized, the fact that they’re even being discussed shows how dire the capacity crisis is.
Even in Texas, the most deregulated market in the country, a plan to offer cheap financing to natural gas-fired power plants to shore up the reliability following the 2021 Winter Storm Elliott disaster has found few takers and few viable projects. You have to get outside restructured electricity markets in states like Tennessee or Georgia, where utilities also control the generation of electricity, to find any appetite for large-scale generation projects like nuclear power plants. These markets are able — for better or worse — to pass along the cost of new power plants to ratepayers. It’s no coincidence that all the new nuclear power — a large source of firm power on the grid that takes a notoriously long time to develop — built this century has come in vertically integrated markets.
Everywhere else, building long-lasting infrastructure assets requires planning to lead the market, Norman told me. “Run really sophisticated competitive procurements — competitive mechanisms that allow you to hit a particular objective instead of the objective supposedly being decided by the market in real time,” he explained.
He pointed to California, where regulators tell utilities to procure clean firm generation like geothermal and long-term energy storage (or the state does it itself). Virginia, which is a vertically integrated market within PJM, has targets for energy storage procurement by its utilities.
Norman’s critique of restructured power markets rhymes with those of former Federal Energy Regulatory Commission Chairman Mark Christie, who said that there’s “missing money” in the electricity markets that exposes consumers to financial and reliability risks. He also asked whether restructured electricity markets, “especially the multi-state capacity markets, have been successful in ensuring a sufficient supply of the power necessary to sustain reliability,” as he wrote in widely noted in a 2023 law review paper.
For her part, Robertson cautioned that there are real technological and logistical questions for how long-duration storage would work in an electricity market, even if you can figure out a way to get them on the grid.
“When we think about longer-duration storage, we have to think about, how would those generators operate, and what timelines are they operating on? If you have a multi-day storage opportunity, how are you going to determine the best time to charge and discharge over that long of an opportunity window?” she asked.
In a RFF paper, Robertson and her co-authors argue that long-duration batteries “likely will not be sufficiently incentivized by price fluctuations within a 24-hour period,” as four-hour batteries are, and will instead have to “take greater advantage of long-term revenue opportunities like capacity markets.” But even then, she cautioned, markets would need to see big swings in prices over potentially multi-day periods to make the charging and discharging cycles of long-duration batteries economical.
Norman, however, had harsh words for critics who say this kind of procurement and planning will lead to inflated costs for infrastructure that may or may not be useful in the future. “What bugs me about keeping our head in the sand is that then results in us saying, Well, we just don’t want to pay for that, so we’re not going to set this target, and we’re going to let the markets decide,” he told me. “All we’re doing is deferring the problem and causing it to cost way more. And so I think we need a bit of a wakeup call.”
On hydrogen woes, Stegra’s steel costs, and refining vs. mining
Current conditions: The Northeastern U.S. is facing winds of up to 80 miles per hour • The remnants of Typhoon Halong are lashing the Alaskan villages of Kipnuk and Kwigillingok with powerful winds and storm surge • A heat wave in South Korea is bringing higher average temperatures this week than in July.
The United States military is stockpiling up to $1 billion of critical minerals as part of a global effort to counter China’s dominance over the metals necessary for sensitive industries including advanced manufacturing and defense. A Financial Times analysis of public filings from the Pentagon’s Defense Logistics Agency showed that the Trump administration has accelerated procurements in recent months as Beijing has cracked down on exports of rare earths and other metals, over which Chinese companies enjoy a tight grip over global supplies. The Department of Defense is “incredibly focused on the stockpile,” a former agency official told the newspaper. “They’re definitely looking for more, and they’re doing it in a deliberate and expansive way, and looking for new sources of different ores needed for defence products.” Among the companies that received funding from the so-called DLA, as I reported last month, is the Ohio-based startup Xerion, whose pioneering method for processing cobalt is now being applied to gallium.
The Trump administration has been on a partial-nationalization spree in recent months to secure mineral supplies. In July, the U.S. military became the largest shareholder in MP Materials, the lone company producing rare earths in the U.S. Last month, the Department of Energy overhauled a loan to Lithium Americas’ Thacker Pass project to take a stake in what will become one of the world’s biggest lithium mines. Earlier this month, President Donald Trump took a share of the Alaskan mining startup Trilogy Metals, as I reported in this newsletter. Reuters reported that the administration is also considering buying shares in Critical Metals, the company looking to develop rare earths in Greenland.
Mega-constulancy McKinsey & Company published a new report on the energy transition Monday, modeling different scenarios for the energy mix of the near-future. None of those scenarios includes clean hydrogen in a significant role. The fuel “is not yet cost competitive at scale, so it is expected to play a limited role in the energy mix,” the report says. Unless governments mandate its use, the analysis found, fuels such as clean hydrogen “are not likely to achieve broad adoption before 2040.” By contrast, fossil fuels are projected to retain between 41% and 55% of the global energy mix by 2050
The report shows hydrogen with a growing but still tiny share of energy usage in 2050.McKinsey
In a sign of where hydrogen may be in its development, another report published Tuesday morning by the California Hydrogen Business Council listed “raising awareness” and “understanding hydrogen” as the first two steps in laying the groundwork for the safe usage of the fuel. The trade group’s 66-page analysis concluded that, while hydrogen “is a hazardous material,” it “can also be used safely” and that “safety should not be viewed as a barrier, but as a catalyst for innovation and acceptance.”
Stegra, the Swedish low-carbon steel startup that aims to use clean hydrogen in its production process, is “scrambling to survive as it struggles to resolve a growing funding gap,” the Financial Times reported Monday. One of Europe’s highest-profile green industrial projects, the company was founded by the same Swedish financiers as the bankrupt battery maker Northvolt. Stegra now needs to raise more than $1.7 billion to build its plant as costs tripled in the past three months, unnamed sources familiar with the financing told the newspaper. Northvolt went under in March despite raising $15 billion in debt, equity, and government funds, signaling how quickly costs can cripple a company’s capacity to continue operating.
While the U.S. steel industry is already cleaner than many countries’ due to its dependence on scrap material rather than iron produced with coal, the Trump administration has slashed funding for green steel, including Cleveland-Cliffs nation-leading effort to produce green steel with clean hydrogen. Yet the “golden share” President Donald Trump claimed for the U.S. Government in U.S. Steel as part of his approval for Japanese rival Nippon Steel’s takeover deal this summer could give a future administration the legal grounds to require the American steelmaker to go green, as Heatmap’s Matthew Zeitlin reported.
Commodities trading giant Trafigura, the world’s largest metals dealer, issued a stark warning to Western countries looking to dig new ores out of the Earth to compete with China. “Mining is not critical,” Trafigura CEO Richard Holtum said in London on Monday, according to Mining Journal. “ True supply chain security comes from processing investment, not just extraction.” China refines roughly 65% of the world’s copper, 70% of its lithium, and 90% of its rare earths. “Western nations are fighting the wrong battle,” Giacomo Prandelli, a commodities trader and analyst, wrote in a post on LinkedIn in response to Holtum’s speech. “They obsess over mining permits while China and Indonesia dominate the midstream, turning raw ore into refined metals that power the global energy transition.”
Investments in refining minerals, however, are costly. While the Pentagon’s purchases of metals guarantees at least one buyer, the Trump administration’s elimination of tax credits for electric vehicles eliminated a key source of demand that would have promised more offtakers for refined metals, representing what Matthew called “the paradox Trump’s critical minerals crusade” back in January.
After raising $78 million in a Series C round last April, sodium-ion battery startup Alsym Energy has rolled out its first battery designed for stationary storage that the company says will be cheaper than lithium-ion systems from day one, Heatmap’s Katie Brigham reported this morning. “I believe we are farthest ahead than anyone else in that space today in the United States,” Alsym’s co-founder and CEO Mukesh Chatter told her. Since the U.S. has vast sodium reserves, Chatter said the company’s America-made batteries will be cheaper than anywhere else. But either way, the company’s cells “will be cost-competitive with the leading lithium-ion chemistry right off the bat,” Katie wrote, with the overall system 30% cheaper because the battery’s thermal stability and ability to perform at high temperatures makes costly cooling systems moot. While sodium-ion cells are less energy dense than lithium-ion, getting rid of the entire HVAC system makes the batteries can operate in “space-constrained environments such as commercial or residential buildings.”
In California, zero-emission vehicles represented 29.1% of new car sales in the third quarter of 2025, the highest quarterly sales ever recorded in the state, Governor Gavin Newsom’s press office announced Monday. “This comes despite the efforts by the Trump administration to derail the ZEV industry and raise the cost of a clean car.” The spike could also be a result of it. Across the country, Americans scrambled to buy electric vehicles at a record clip to secure federal tax credits before the September 30 expiration date set under Trump’s landmark tax law.
After a string of high-profile failures, this sodium-ion startup has a proprietary chemistry and a plan to compete on cost.
It’s been a bad year for batteries. Grand plans to commercialize novel chemistries and build a manufacturing base outside of China have stumbled, with the collapse of both Northvolt and Natron casting a shadow over the sector. But just as many may be losing faith, there’s a new player in the space: Alsym Energy announced today that it’s rolling out a sodium-ion battery designed for stationary storage that it says will be cheaper than lithium-ion systems from day one.
“It’s always the darkest before the sunrise,” Alsym’s co-founder and CEO Mukesh Chatter told me, saying that past failures in the battery space are irrelevant to the specific tech his company is pursuing. The startup, which raised a $78 million Series C round last April, is targeting the battery energy storage market across utility-scale, commercial, and industrial applications — everything from grid-connected systems to power for data centers, high rise buildings, and mining operations.
Alsym’s chemistry is called sodium iron pyrophosphate, or NFPP+. The “plus” represents dopants — small amounts of additional elements — which are added to the chemistry to improve performance. While the specific dopants and the battery’s electrolyte are proprietary, Chatter told me that the technology doesn’t require the critical minerals lithium, cobalt, or nickel, and that the company will source raw materials entirely from the U.S. or its allies.
The product, which is scheduled to deploy on a small scale next year and reach higher volumes in 2027, follows a decade of research into nonflammable lithium-ion alternatives. The company spent years testing different chemistries after it spun out of MIT in 2015, before settling on NFPP+ chemistry within the last 18 months. Chatter remained tight-lipped about the specifics of that process, noting only that the company faced “a couple of false starts,” coupled with supply chain challenges earlier this year.
Now, though, those years of research might have finally paid off. “I believe we are farthest ahead than anyone else in that space today in the United States,” he told me.
One of Alsym’s key advantages, Chatter explained, is that its battery has been certified by the independent safety body Underwriter Laboratories as nonflammable, compared to lithium-ion batteries, which are notoriously not. Alsym’s battery also offers superior performance at both high and low temperatures. The company’s cells will be cost-competitive with the leading lithium-ion chemistry right off the bat, Chatter told me, and the overall system will be 30% cheaper because the battery’s thermal stability and ability to perform at high temperatures eliminates the need for the costly, maintenance-heavy cooling systems. It’s a similar value proposition to that of Peak Energy, another startup seeking to deploy sodium-ion battery storage systems.
While sodium-ion cells are less energy dense than lithium-ion, eliminating the entire HVAC system means that the system itself isn’t all that much bulkier, making it possible to deploy in space-constrained environments such as commercial or residential buildings.
Alsym aims to manufacture its sodium-ion cells in the U.S., both for supply chain security and to take advantage of the country’s abundant sodium reserves. The latter, Chatter told me, means that “it will be cheaper to build it in the United States than anywhere else.”
While Alsym operates a pilot plant making sodium-ion cells, the company plans to scale its production through partnerships with third parties who either operate existing lithium-ion cell facilities or are in the process of building them, as sodium-ion cells can be produced on the same lines. “We want to partner with somebody who has that scale,” Chatter told me, explaining that a company of Alsym’s size could never compete with China by going at it alone. “But if we can partner with a much larger player who has the heft and the skill set and expertise to build large plants — or already has lithium ion plants — then we can compete head to head.”
Tata Energy, a leading power company in India worth about $14 billion, led Alsym’s Series C round. Chatter said the company also has strategic support from several mining companies, with other early use cases likely to include microgrid installations as well as primary or backup power for data centers and telecom companies.
“It’s not exactly the most glamorous space right now,” Chatter admitted, acknowledging the string of recent battery company failures. “But things happen in ebbs and flows.” He thinks the sodium-ion sector just needs one big success to prove its potential as a safer, cheaper alternative. “It really is all about cost and revenue opportunities,” he told me. If all goes according to plan for Alsym, we won’t have to wait much longer to see if he’s right.