You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Maybe you’re reading this in a downpour. Perhaps you’re reading it because you have questions about the upcoming hurricane season. Or maybe you’re reading it because you’re one of the 150 million Americans enduring record-breaking temperatures in this week’s heat dome.
Whatever the reason, you have a question: Is this climate change?
There’s an old maxim — that, like many things, is often dubiously attributed to Mark Twain — that goes something like, “Climate is what you expect and weather is what you get.” Weather refers to the event itself, while climate refers to the trends (averaged over 30 years or more, usually) that might make such an event more or less likely.
Climate change is almost always an exacerbating factor in the case of something like a heat wave or a heat dome. In other situations, the picture is far more complicated and uncertain. It can take years to understand if and how climate change made an extreme weather event more likely, and while organizations like World Weather Attribution work hard to provide quick and accurate estimations, getting the science wrong can fuel climate skepticism and bolster deniers’ arguments. While it might be tempting to pin all extreme weather on climate change, the truth is, not all of it is.
Still, we do know a lot about how climate change influences the weather — and we’re always learning more. While this guide is far from the be-all and end-all of attribution and should be referred to with caveats, here is what we know about how climate change is shaping the extreme weather we see today.
“When you’re looking at heat extremes, there is almost always a climate change signal,” Clair Barnes, a research associate with World Weather Attribution, told me. “I don’t think there’s ever not been a climate change signal since I’ve been doing it in the last couple of years.”
As the planet warms, local temperatures respond everywhere. There are not as many complicating variables in this relationship as there are with something like drought. “With heat waves, it’s the same answer every time: It got hotter because it’s got hotter,” Barnes said.
The Intergovernmental Panel on Climate Change has found that the kind of heat waves that would have occurred once in a decade before the Industrial Revolution now occur almost three times more frequently and are 1.2 degrees Celsius (or 2.2 degrees Fahrenheit) warmer. The most extreme examples — like the 2021 heat dome over the Pacific Northwest — appear to have been possible only because of warming caused by greenhouse gas emissions. Additionally, about 37% of global heat-related deaths, which amount to tens of thousands of deaths per year, are attributable to climate change.
There have, of course, always been heat waves. But it is with high confidence that scientists say they are hotter and last longer now than they would otherwise because of climate change.
Did climate change do it? It is “virtually certain” that heat waves are more frequent and hotter than they otherwise would be because of climate change.
WWA doesn’t specifically study wildfires since they aren’t technically “weather” (though once they form, they can make their own). Instead, the organization studies the conditions that make a fire more likely. In the American West, this deadly combo usually involves high pressure, extremely dry air, and some wind.
Globally, burned areas decreased between 1998 and 2015, but that isn’t because fire-weather conditions are improving — rather, regional leaders have gotten better at things like land use and fire management. Fire weather, meanwhile, is increasing and lasting longer due to climate change. In particular, hotter temperatures — especially hotter overnight temperatures — make it more difficult to combat the fires that do ignite. (Most fires in the U.S. start due to human negligence or arson, rather than by natural causes such as lightning strikes.)
This is especially the case in California, where 10 of the state’s largest fires have occurred in the past two decades, with five in 2020 alone; a 2023 National Integrated Drought Information System-funded study further found a 320% increase in burned areas in the state between 1996 and 2021 due to contributions of human-caused climate change, with that number expected to grow in the coming decades.
On average, wildfire weather season lengthened by two weeks around the globe from 1979 to 2019. The IPCC has medium confidence in the claim that fire weather has become more probable in the U.S., Europe, Australia, and parts of Europe over the past century, and high confidence that fire weather will increase regionally due to global warming in the coming years.
Did climate change do it? Climate change has almost certainly exacerbated the heat, humidity, and drought conditions necessary for wildfires to start. The actual ignition of the fire is frequently human-caused, however, and complicating variables such as local vegetation, forest management, and land use can also muddle the picture.
Tropical cyclones are large and complicated storm systems. Ocean temperatures, the El Niño-Southern Oscillation, wind shear, barometric pressure, atmospheric moisture, the shape of the continental shelf, emergency preparedness measures, and pure luck all affect how destructive a given storm might be — when or if it makes landfall. Climate change can put a thumb on the scale, but it is far from a lone actor.
Hurricanes — the strongest manifestation of a tropical cyclone — essentially work by transferring heat from the ocean into wind energy. Because the ocean absorbs excess heat from the warming atmosphere, scientists expect to see more “major” hurricanes of Category 3 or above in the coming years.
The storms aren’t just getting more powerful, though. Because of the interaction between ocean heat and energy in a hurricane, the storms also intensify more rapidly and are “more than twice as likely to strengthen from a weak Category 1 hurricane to a major Category 3 or stronger hurricane in a 24-hour period than they were between 1970 and 1990,” according to new research published last year.
WWA says it cannot attribute the intensification of any individual storm to climate change due to relatively limited modeling so far, so the organization instead looks at how climate change may have amplified associated rainfall and storm surges. Rainfall and flooding are, in fact, more deadly than high wind speeds in hurricanes, and both are understood to be increasing because of climate change. Put simply, a warmer atmosphere can hold more water, which means worse deluges. Researchers linked extreme rainfall during Hurricanes Katrina, Maria, and Irma to climate change; Hurricane Harvey, which flooded up to 50% of the properties in Harris County, Texas, when it made landfall in 2017, had a rainfall total 15% to 38% greater than it would have been in a pre-industrial world, researchers found. Additionally, rising sea levels caused by climate change will worsen coastal flooding during such events.
However, “trends indicate no significant change in the frequency of tropical cyclones globally,” according to the IPCC. That is, there aren’t more hurricanes; the ones that form are just more likely to become major hurricanes. Scientists understand far less about what climate change means for the smaller Category 1 or 2 storms, or if it will impact the diameter of the storms that do form.
Did climate change do it? The greenhouse effect is making the atmosphere warmer, and in a warmer climate, we’d expect to see more major hurricanes of Category 3 and above. Evidence also points to hurricanes intensifying much more rapidly in today’s climate than in the past. Climate does not seem to play a role in the overall number of storms, though, and other critical factors like the path of a storm and the emergency preparedness of a given community have a significant impact on the potential loss of life but aren’t linked to a warmer atmosphere. Hurricanes are complicated events and there is still much more research to be done in understanding how exactly they’re impacted by climate change.
In the winter, your skin might feel dry, and your lips might chap; in the summer, many parts of the country feel sticky and swampy. This is simple, observable physics: Cold air holds less moisture, and warm air holds more. The “Clausius-Clapeyron” relation, as it is known, tells us that in 1 degree C warmer air, there is 7% more moisture. All that moisture has to go somewhere, so quite literally, when it rains, it pours. (That is, when and where it rains: WWA notes that “an attribution study in northern Europe found that human influence has so far had little effect on the atmospheric circulation that caused a severe rainfall event.”)
Like heat, the relationship between warm air and rainfall is well understood, which is why the IPCC is highly confident in the attributable influence of climate change on extreme rain. While it may seem confusing that both droughts and intense rainfall are symptoms of climate change, the warming atmosphere seems to increase precipitation variability, making events on the extreme margins more likely and more frequent.
Increased precipitation can have counterintuitive results, though. Rain occurring over fewer overall days due to bursts of extreme rainfall, for example, can actually worsen droughts. And while it might seem like more water in the atmosphere would mean snowier winters, that’s only true in certain places. Because it’s also warmer, snowfall is declining globally while winters are getting wetter — and as a result, probably more miserable.
But what does “more rain” really mean? Rain on its own isn’t necessarily bad, but when it overwhelms urban infrastructure or threatens roads and houses, it can quickly become deadly. Flooding, of course, is often the result of extreme rain, but “the signal in the rainfall is not necessarily correlated to the magnitude of the floods because there are other factors that turn rain into a flood,” Barnes, the research associate with WWA, told me, citing variables such as land use, water management, urban drainage, and other physical elements of a landscape.
Landslides, likewise, are caused by everything from volcanic eruptions to human construction, but rain is often a factor (climate-linked phenomena like wildfires and thawing permafrost also contribute to landslides). The IPCC writes with “high confidence” that landslides, along with floods and water availability, “have the potential to lead to severe consequences for people, infrastructure, and the economy in most mountain regions.”
Did climate change do it? More extreme rainfall is consistent with our understanding of climate change’s effects. Many other local, physical factors can compound or mitigate disasters like floods and mudslides, however.
When I spoke with Barnes, of WWA, she told me, “It’s really easy to define a heat wave. You just go, ‘It was hot.’” Droughts, not so much. For one thing, you have to define the time span you’re looking at. There are also different kinds of drought: meteorological, when there hasn’t been enough rain; hydrological, when rivers are low possibly because something else is diverting water from the natural cycle; and agricultural, when there is not enough water specifically for crops. Like flooding, many different infrastructural and physical factors go into exacerbating or even creating various kinds of droughts.
Drought as we mean it here, though, is a question of soil moisture, Barnes told me. “That’s really hard to get data on,” she said, “and we don’t necessarily understand the feedback mechanisms affecting that as well as we understand heat waves.” As recently as 2013, the IPCC had only low confidence that trends in drought could be attributed to climate change.
We have a better understanding of how drought and climate change interact now, including how higher temperatures drive evaporation and cut into snowpack, leading to less meltwater in rivers. The IPCC’s most recent report concluded that “even relatively small incremental increases in global warming (+0.5C) cause a worsening of droughts in some regions.” The IPCC also has high confidence that “more regions are affected by increases in agricultural and ecological droughts with increasing global warming.”
WWA’s attribution studies have, however, found examples of droughts that have no connection to climate change. The organization flags that it has the highest confidence in the climate affecting droughts in the Mediterranean, southern Africa, central and eastern Asia, southern Australia, and western North America and lower confidence in central and west Africa, western and central Europe, northeast South America, and New Zealand.
Did climate change do it? Maybe. Some droughts have a strong climate signal — California’s, for example. Still, researchers remain cautious about attribution for these complicated events due in part to their significant regional variability.
Tornadoes are extremely difficult to study. Compared to droughts, which can last years, tornadoes occupy a teeny tiny area and last for just a blip in time. They “wouldn’t even register” on the models WWA uses for its attribution studies, Barnes said. “It would probably look like a slightly raised average wind speed.” The IPCC, for its part, has only “low confidence” in a connection between climate change and “severe convective storms” like tornadoes, in part due to the “short length of high-quality data records.”
But we are learning more every day. This spring, researchers posited that Tornado Alley is moving east and “away from the warm season, especially the summer, and toward the cold season.” Though it’s not entirely clear why this is happening, one theory is that it relates to how climate change is affecting regional seasonality: winters and nights are becoming warmer in certain areas, and thus more conducive to tornado formation, while others are becoming too hot for storms to form during the normal season.
Did climate change do it? Researchers aren’t entirely sure but there doesn’t appear to be a correlation between tornado formation and climate change. Still, warmer temperatures potentially make certain areas more or less prone to tornadoes than they were in the past.
We say “it was a dark and stormy night” because “it was a severe convective storm” doesn’t have the same ring. But an SCS — which forms when warm, moist air rises into colder air — is the most common and most damaging weather phenomenon in the United States. You probably just call it a thunderstorm.
Severe convective storms cause many localized events that we think of as “weather,” including heavy rainfall, high winds, tornadoes, hail, thunder, and lightning. Because heat and moisture are necessary ingredients for these kinds of storms, and because the atmosphere is getting both warmer and wetter, climate models “consistently” and confidently predict an “increase in the frequency of severe thunderstorms,” the IPCC notes — but, “there is low confidence in the details of the projected increase.” Trends remain poorly studied and highly regionally dependent; in the United States, for example, there is still no evidence of a “significant increase in convective storms, and hail and severe thunderstorms.” Still, other research suggests that for every 1.8 degree F of warming, the conditions favorable to severe convective storms will increase in frequency by up to 20%.
Hail forms during severe convective storms when the hot, moist air rises to a region of the atmosphere where it is cold enough to freeze. Like thunderstorms more generally, data is fairly limited on hail, making it difficult to study long-term trends (most climate models also do not look directly at hail, studying convective storms more broadly instead). However, it’s been hypothesized that climate change could create larger and more destructive hail in the future; if thunderstorm updrafts grow stronger, as projected, then they could hold hail at freezing high altitudes for longer, allowing individual hailstones to grow larger before falling back to Earth. One study even suggested that with continued warming, there could be a 145% increase in “significant severe hail” measuring at least 2 inches in diameter — that is, a little smaller than a tennis ball.
Did climate change do it? Everything we know about thunderstorms suggests that a warmer, wetter atmosphere will mean severe convection storms become both more frequent and more intense. But there is still very little available data to track the long-term trends, so attributing any one storm to climate change would be nearly impossible.
Just as virtually all heat waves worldwide are worsened by climate change, “nearly every instance of extreme cold across the world has decreased in likelihood,” according to the WWA. While the organization has run attribution studies on “a few” heavy snowfall events, it has either found no link to climate change or has been unable to state a conclusion confidently. On the other hand, the loss of snow cover, permafrost, Arctic sea ice, and glaciers has a high-confidence link to human-caused climate change in the IPCC report.
Just because climate change makes extreme cold and snowstorms less likely does not mean they won’t happen. Research published in Nature earlier this year suggests climate change could bring more snow to certain places, as extremely cold parts of the world warm to snow-friendly temperatures, and increased precipitation from a warmer atmosphere results in more flurries. Parts of Siberia and the northern Great Plains are even experiencing a deepening snowpack.
Did climate change do it? Probably not — though there are notable exceptions.
An earthquake is usually caused by the release of energy when two tectonic plates suddenly slip past each other (though they can also be caused by fossil fuel extraction). But before you dismiss earthquakes as having no connection to climate change, there is one place where there could be a link: water.
As Emily Pontecorvo wrote for Heatmap this spring, “Changes in surface water, whether because of heavy rain, snow, or drought, could either increase or relieve stress on geologic faults, causing them to shift.” Admittedly, even if there is a relationship between climate change, water, and earthquakes, it appears to be small — so small that humans probably can’t feel any resulting quakes.
Did climate change do it? It’s highly unlikely.
Earlier this year, extreme turbulence on a Singapore-bound flight from London killed one person and injured at least 20 others. While such events remain rare — the U.S. National Transportation Safety Board recorded just 101 serious injuries caused by turbulence on millions of flights between 2013 and 2022 — extreme turbulence appears to be increasing, potentially because of climate change.
According to one study, severe turbulence is up 55% between 1979 and 2020, seemingly due to an increase in wind shear at high altitudes caused by the temperature contrast between the equator and the North Pole. (This relationship is a little bit complicated, but essentially, at higher altitudes, the temperature over the pole has been declining due to rapid Arctic temperature changes even as it’s increased at the equator; lower in the troposphere, the opposite is happening). Other studies have similarly shown that doubling the concentration of carbon dioxide in the atmosphere could increase moderate-to-severe turbulence by as much as 127%.
Data, however, is limited and fairly subjective, leading to some skepticism in the scientific community and inaccurate dismissals by climate-change deniers. As with many complex weather phenomena, our understanding of how climate change interacts with turbulence will likely grow in the coming years as the field of research develops.
Did climate change do it? Potentially in some cases, but there is still much to learn about the connection between the two.
Desertification differs from drought in that it describes a decline in soil fertility, water, and plant life to the point of total “land degradation.” (In contrast, land can become productive again after a drought.) Like other compound disasters, desertification results from natural processes, climatic conditions, and land management practices such as grazing and deforestation.
According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, land degradation is “almost always” the result of these “multiple interacting causes,” and the warming climate certainly isn’t helping. Heat stress can kill off vegetation, making landscapes more prone to desertification, as well as drive aridification.
In the resulting drylands — which comprise about 46% of global land area — you can expect dust storms (also known as haboobs), and sand storms resulting from the wind kicking up loose soils. While there have always been sand storms, one study suggests that climate change is one of the critical drivers of global annual dust emissions increasing by 25% between the late 19th century and today.
However, “climate change impacts on dust and sand storm activity remain a critical gap,” writes the IPCC, and more research is desperately needed to address this. By the UN’s estimate, dust storms were associated with the deaths of 402,000 people in 2005. As many as 951 million people, mainly in South Asia, Central Asia, West Africa, and East Asia, could be vulnerable to the impacts of desertification if climate change continues.
Did climate change do it? It was potentially a factor, but we have lots more to learn.
Are locust swarms technically “weather”? Not really. But so long as we’re on the topic of weather events of Biblical proportions, locust swarms might as well be addressed, too.
And the answer may surprise you: Climate appears to be a driver of locust swarms, which threaten food security and exacerbate famines throughout Africa, the Middle East, and South Asia. Locusts prefer “arid areas punched by extreme rainfall,” according to one study that looked at the connection between swarms and climate change, and while much of that pattern is fixed in the natural El Niño–Southern Oscillation cycle, a warming climate will also “lead to widespread increases in locust outbreaks with emerging hotspots in west central Asia.” In particular, the research found that in a low-emissions scenario, locust habitat could increase by 5%, while in a high-emissions scenario, it could increase by 13% to 25% between 2065 and 2100.
Did climate change do it? It’d likely be tricky to attribute any one locust swarm to climate change, but as with many other natural phenomena, climate likely plays a compounding factor.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On a new plan for an old site, tariffs on Canada, and the Grain Belt Express
Current conditions: Phoenix will “cool” to 108 degrees Fahrenheit today after hitting 118 degrees on Thursday, its hottest day of the year so far • An extreme wildfire warning is in place through the weekend in Scotland • University of Colorado forecasters decreased their outlook for the 2025 hurricane season to 16 named storms, eight hurricanes, and three major hurricanes after a quiet June and July.
President Trump threatened a 35% tariff on Canadian imports on Thursday, giving Prime Minister Mark Carney a deadline of August 1 before the levies would go into effect. The move follows months of on-again, off-again threats against Canada, with former Canadian Prime Minister Justin Trudeau having successfully staved off the tariffs during talks in February. Despite those earlier negotiations, Trump held firm on his 50% tariff on steel and aluminum, which will have significant implications for green manufacturing.
As my colleagues Matthew Zeitlin and Robinson Meyer have written, tariffs on Canadian imports will affect the flow of oil, minerals, and lumber, as well as possibly break automobile supply chains in the United States. It was unclear as of Thursday, however, whether Trump’s tariffs “would affect all Canadian goods, or if he would follow through,” The New York Times reports. The move follows Trump’s announcement this week of tariffs on several other significant trade partners like Japan and South Korea, as well as a 50% tariff on copper.
The long beleaguered Lava Ridge Wind Project, formally halted earlier this year by an executive order from President Trump, might have a second life as the site for small modular reactors, Idaho News 6 reports. Sawtooth Energy Development Corporation has proposed installing six small nuclear power generators on the former Lava Ridge grounds in Jerome County, Idaho, drawn to the site by the power transmission infrastructure that could connect the region to the Midpoint Substation and onto the rest of the Western U.S. The proposed SMR project would be significantly smaller in scale than Lava Ridge, which would have produced 1,000 megawatts of electricity on a 200,000-acre footprint, sitting instead on 40 acres and generating 462 megawatts, enough to power 400,000 homes.
Sawtooth Energy plans to hold four public meetings on the proposal beginning July 21. The Lava Ridge Wind Project had faced strong local opposition — we named it the No. 1 most at-risk project of the energy transition last fall — due in part to concerns about the visibility of the turbines from the Minidoka National Historic Site, the site of a Japanese internment camp.
Get Heatmap AM directly in your inbox every morning:
Republican Senator Josh Hawley of Missouri said on social media Thursday that Energy Secretary Chris Wright had assured him that he will be “putting a stop to the Grain Belt Express green scam.” The Grain Belt Express is an 804-mile-long, $11 billion planned transmission line that would connect wind farms in Kansas to energy consumers in Missouri, Illinois, and Indiana, which has been nearing construction after “more than a decade of delays,” The New York Times reports. But earlier this month, Missouri Attorney General Andrew Bailey, a Republican, put in a request for the local public service commission to reconsider its approval, claiming that the project had overstated the number of jobs it would create and the cost savings for customers. Hawley has also been a vocal critic of the project and had asked the Energy Department to cancel its conditional loan guarantee for the transmission project.
New electric vehicles sold in Europe are significantly more environmentally friendly than gas cars, even when battery production is taken into consideration, according to a new study by the International Council on Clean Transportation. Per the report, EVs produce 73% less life-cycle greenhouse gas emissions than combustion engine cars, even considering production — a 24% improvement over 2021 estimates. The gains are also owed to the large share of renewable energy sources in Europe, and factor in that “cars sold today typically remain on the road for about 20 years, [and] continued improvement of the electricity mix will only widen the climate benefits of battery electric cars.” The gains are exclusive to battery electric cars, however; “other powertrains, including hybrids and plug-in hybrids, show only marginal or no progress in reducing their climate impacts,” the report found.
Aryna Sabalenka attempts to cool down during her Ladies' Singles semi-final at Wimbledon on Thursday.Julian Finney/Getty Images
With the United Kingdom staring down its third heatwave in a month this week, a new study warns of dire consequences if homes and cities do not adapt to the new climate reality. According to researchers at the University College London and the London School of Hygiene and Tropical Medicine, heat-related deaths in England and Wales could rise 50-fold by the 2070s, jumping from a baseline of 634 deaths to 34,027 in a worst-case scenario of 4.3 degrees Celsius warming, a high-emissions pathway.
The report specifically cited the aging populations of England and Wales, as older people become more vulnerable to the impacts of extreme heat. Low adoption of air conditioning is also a factor: only 2% to 5% of English households use air conditioning, although that number may grow to 32% by 2050. “We can mitigate [the] severity” of the health impacts of heat “by reducing greenhouse gas emissions and with carefully planned adaptations, but we have to start now,” UCL researcher Clare Heaviside told Sky News.
This week, Centerville, Ohio, rolled out high-tech recycling trucks that will use AI to scan the contents of residents’ bins and flag when items have been improperly sorted. “Reducing contamination in our recycling system lowers processing costs and improves the overall efficiency of our collection,” City Manager Wayne Davis said in a statement about the AI pilot program, per the Dayton Daily News.
Or at least the team at Emerald AI is going to try.
Everyone’s worried about the ravenous energy needs of AI data centers, which the International Energy Agency projects will help catalyze nearly 4% growth in global electricity demand this year and next, hitting the U.S. power sector particularly hard. On Monday, the Department of Energy released a report adding fuel to that fire, warning that blackouts in the U.S. could become 100 times more common by 2030 in large part due to data centers for AI.
The report stirred controversy among clean energy advocates, who cast doubt on that topline number and thus the paper’s justification for a significant fossil fuel buildout. But no matter how the AI revolution is powered, there’s widespread agreement that it’s going to require major infrastructure development of some form or another.
Not so fast, says Emerald AI, which emerged from stealth last week with $24.5 million in seed funding led by Radical Ventures along with a slew of other big name backers, including Nvidia’s venture arm as well as former Secretary of State John Kerry, Google’s chief scientist Jeff Dean, and Kleiner Perkins chair John Doerr. The startup, founded and led by Orsted’s former chief strategy and innovation officer Varun Sivaram, was built to turn data centers from “grid liabilities into flexible assets” by slowing, pausing, or redirecting AI workloads during times of peak energy demand.
Research shows this type of data center load flexibility could unleash nearly 100 gigawatts of grid capacity — the equivalent of four or five Project Stargates and enough to power about 83 million U.S. homes for a year. Such adjustments, Sivaram told me, would be necessary for only about 0.5% of a data center’s total operating time, a fragment so tiny that it renders any resulting training or operating performance dips for AI models essentially negligible.
As impressive as that hypothetical potential is, whether a software product can actually reduce the pressures facing the grid is a high stakes question. The U.S. urgently needs enough energy to serve that data center growth, both to ensure its economic competitiveness and to keep electricity bills affordable for Americans. If an algorithm could help alleviate even some of the urgency of an unprecedented buildout of power plants and transmission infrastructure, well, that’d be a big deal.
While Emerald AI will by no means negate the need to expand and upgrade our energy system, Sivaram told me, the software alone “materially changes the build out needs to meet massive demand expansion,” he said. “It unleashes energy abundance using our existing system.”
Grand as that sounds, the fundamental idea is nothing new. It’s the same concept as a virtual power plant, which coordinates distributed energy resources such as rooftop solar panels, smart thermostats, and electric vehicles to ramp energy supply either up or down in accordance with the grid’s needs.
Adoption of VPPs has lagged far behind their technical potential, however. That’s due to a whole host of policy, regulatory, and market barriers such as a lack of state and utility-level rules around payment structures, insufficient participation incentives for customers and utilities, and limited access to wholesale electricity markets. These programs also depend on widespread customer opt-in to make a real impact on the grid.
“It’s really hard to aggregate enough Nest thermostats to make any kind of dent,”” Sivaram told me. Data centers are different, he said, simply because “they’re enormous, they’re a small city.” They’re also, by nature, virtually controllable and often already interconnected if they’re owned by the same company. Sivaram thinks the potential of flexible data center loads is so promising and the assets themselves so valuable that governments and utilities will opt to organize “bespoke arrangements for data centers to provide their services.”
Sivaram told me he’s also optimistic that utilities will offer data center operators with flexible loads the option to skip the ever-growing interconnection queue, helping hyperscalers get online and turn a profit more quickly.
The potential to jump the queue is not something that utilities have formally advertised as an option, however, although there appears to be growing interest in the idea. An incentive like this will be core to making Emerald AI’s business case work, transmission advocate and president of Grid Strategies Rob Gramlich told me.
Data center developers are spending billions every year on the semiconductor chips powering their AI models, so the typical demand response value proposition — earn a small sum by turning off appliances when the grid is strained — doesn’t apply here. “There’s just not anywhere near enough money in that for a hyperscaler to say, Oh yeah, I’m gonna not run my Nvidia chips for a while to make $200 a megawatt hour. That’s peanuts compared to the bazillions [they] just spent,” Gramlich explained.
For Emerald AI to make a real dent in energy supply and blunt the need for an immediate and enormous grid buildout, a significant number of data center operators will have to adopt the platform. That’s where the partnership with Nvidia comes in handy, Sivaram told me, as the startup is “working with them on the reference architecture” for future AI data centers. “The goal is for all [data centers] to be potentially flexible in the future because there will be a standard reference design,” Sivaram said.
Whether or not data centers will go all in on Nvidia’s design remains to be seen, of course. Hyperscalers have not typically thought of data centers as a flexible asset. Right now, Gramlich said, most are still in the mindset that they need to be operating all 8,760 hours of the year to reach their performance targets.
“Two or three years ago, when we first noticed the surge in AI-driven demand, I talked to every hyperscaler about how flexible they thought they could be, because it seemed intuitive that machine learning might be more flexible than search and streaming,” Gramlich told me. By and large, the response was that while these companies might be interested in exploring flexibility “potentially, maybe, someday,” they were mostly focused on their mandate to get huge amounts of gigawatts online, with little time to explore new data center models.
“Even the ones that are talking about flexibility now, in terms of what they’re actually doing in the market today, they all are demanding 8,760 [hours of operation per year],” Gramlich told me.
Emerald AI is well aware that its business depends on proving to hyperscalers that a degree of flexibility won’t materially impact their operations. Last week, the startup released the results of a pilot demonstration that it ran at an Oracle data center in Phoenix, which proved it was able to reduce power consumption by 25% for three hours during a period of grid stress while still “assuring acceptable customer performance for AI workloads.”
It achieved this by categorizing specific AI tasks — think everything from model training and fine tuning to conversations with chatbots — from high to low priority, indicating the degree to which operations could be slowed while still meeting Oracle’s performance targets. Now, Emerald AI is planning additional, larger-scale demonstrations to showcase its capacity to handle more complex scenarios, such as responding to unexpected grid emergencies.
As transmission planners and hyperscalers alike wait to see more proof validating Emerald AI’s vision of the future, Sivaram is careful to note that his company is not advocating for a halt to energy system expansion. In an increasingly electrified economy, expanding and upgrading the grid will be essential — even if every data center in the world has a flexible load profile.
’We should be building a nationwide transmission system. We should be building out generation. We should be doing grid modernization with grid enhancing technologies,” Sivaram told me. “We just don’t need to overdo it. We don’t need the particularly massive projections that you’re seeing that are going to cause your grandmother’s electricity rates to spike. We can avoid that.”
The saga of the Greenhouse Gas Reduction Fund takes another turn.
On July 3, just after the House voted to send the reconciliation bill to Trump’s desk, a lawyer for the Department of Justice swiftly sent a letter to the U.S. Court of Appeals for the D.C. Circuit. Once Trump signed the One Big Beautiful Bill Act into law, the letter said, the group of nonprofits suing the government for canceling the biggest clean energy program in the country’s history would no longer have a case.
It was the latest salvo in the saga of the Greenhouse Gas Reduction Fund, former President Joe Biden’s green bank program, which current Environmental Protection Agency Administrator Lee Zeldin has made the target of his “gold bar” scandal. At stake is nearly $20 billion to fight climate change.
Congress created the program as part of the Inflation Reduction Act in 2022. It authorized Biden’s EPA to award that $20 billion to a handful of nonprofits that would then offer low-cost loans to individuals and organizations for solar installations, building efficiency upgrades, and other efforts to reduce emissions. The agency announced the recipients last summer, before its September deadline to get the funds out.
Then Trump took office and ordered his agency heads to pause and review all funding for Inflation Reduction Act programs.
In early March, buoyed by a covert video of a former EPA employee making an unfortunate and widely misunderstood comparison of the effort to award the funding to “throwing gold bars off the edge” of the Titanic, Zeldin notified the recipients that he was terminating their grant agreements. He cited “substantial concerns” regarding “program integrity, the award process, programmatic fraud, waste, and abuse, and misalignment with agency’s priorities.”
In court proceedings over the decision, the government has yet to cite any specific acts of fraud, waste, or abuse that justified the termination — a fact that the initial judge overseeing the case pointed out in mid-April when she ordered a preliminary injunction blocking the EPA from canceling the grants. But the EPA quickly appealed to the D.C. Circuit Court, which stayed the lower court’s injunction. The money remains frozen at Citibank, which had been overseeing its disbursement, as the parties await the appeals court’s decision.
As all of this was playing out, Congress wrote and passed the One Big Beautiful Bill Act. The new law rescinds the “unobligated” funding — money that hasn’t yet been spent or contracted out — from nearly 50 Inflation Reduction Act programs, including the Greenhouse Gas Reduction Fund. According to an estimate from the Congressional Budget Office, the remaining balance in the fund was just $19 million.
The Trump administration, however, is arguing in court that the OBBBA doesn’t just recoup that $19 million, but also the billions in awards at issue in the lawsuit. Congress has rescinded “the appropriated funds that plaintiffs sought to reinstate through this action,” Principal Deputy Assistant Attorney General Yaakov Roth wrote in his July 3 letter, implying that the awards were no longer officially “obligated” and that all of the money would have to be returned. Therefore, “it is more clear than ever that the district court’s preliminary injunction must be reversed,” he wrote.
Roth cited a statement that Shelley Moore Capito, chair of the Senate Environment and Public Works Committee, made on the floor of the Senate in June. She said she agreed with Zeldin’s decision to cancel the Greenhouse Gas Reduction Fund grants, and that it was Congress’ intent to rescind the funds that “had been obligated but were subsequently de-obligated” — about $17 billion in total. She did not acknowledge that Zeldin’s decision was being actively litigated in court.
On Monday, attorneys for the plaintiffs fired back with a message to the court that the reconciliation bill does not, in fact, change anything about the case. They argued that the EPA broke the law by canceling the grants, and that the OBBBA can’t retroactively absolve the agency. They also served up a conflicting statement that Capito made about the fund to Politico in November. “We’re not gonna go claw back money,” she said. “That’s a ridiculous thought.”
Capito’s colleague Sheldon Whitehouse, a Democrat, offered additional evidence on the floor of the Senate Wednesday. He cited the Congressional Budget Office’s score of the repeal of the program of $19 million, noting that it was the amount “EPA had remaining to oversee the program” and that “at no point in our discussions with the majority, directly or in our several conversations with the Parliamentarian, was this score disputed.” Whitehouse also called up a previous statement made by Republican Representative Morgan Griffith, a member of the House Energy and Commerce Committee, during a markup of the bill. “I just want to point out that these provisions that we are talking about only apply as far, as this bill is concerned, to the unobligated balances,” Griffith said.
Regardless, it will be up to the D.C. Circuit Court as to whether the lower court’s injunction was warranted. If it agrees, the nonprofit awardees may still, in fact, be able to get the money flowing for clean energy projects.
“Wishful thinking on the part of DOJ does not moot the ongoing litigation,” Whitehouse said.