You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
And make a meaningful difference in the fight against climate change, while you’re at it.

Welcome to
Decarbonize Your Life, Heatmap’s special report that aims to help you make decisions in your own life that are better for the climate, better for you, and better for the world we all live in.
This is our attempt, in other words, to assist you in living something like a normal life while also making progress in the fight against climate change. That means making smarter and more informed decisions about how climate change affects your life — and about how your life affects climate change. The point is not what you shouldn’t do (although there is some of that). It’s about what you should do to exert the most leverage on the global economic system and, hopefully, nudge things toward decarbonization just a little bit faster.
We certainly think we’ve hit upon a better way to think about climate action, but you don’t have to take our word for it. Keep reading here for more on how (and why) we think about decarbonizing your life — or just skip ahead to our recommendations.
At this point, everyone knows that individual action won’t solve climate change. Didn’t BP invent the term “carbon footprint” in 2004 so as to distract from fossil fuel companies’ guilt and greed?
As the journalist Rachel Cohen has observed, around the 2010s it became unpopular to believe that individual action could help address any major social problem. And sure, it’s true that only collective action — achieved through something like the political system — will let us eventually manage climate change at the global level.
But at Heatmap, we believe that that isn’t quite the whole story. Just because politics and collective action are the only things that can solve climate change doesn’t mean they are the only things that can do something about climate change. What’s more, the problem of carbon emissions — and the stickiness of fossil fuels — emerges from a tight knot of chemical efficiency, political power, and logistical lock-in. If individual consumers can pry at that knot, can make it a little easier to imagine a post-fossil energy system, then they can realize a zero-carbon world a little sooner.
That way of thinking about climate change, however, requires us to think somewhat differently about how to take individual action in the first place. Often, when you read about how to fight climate change as a person or family, the advice assumes that you want to reduce your responsibility for climate change. You’re advised to turn down the thermostat in the winter (or turn it up in the summer), shut off the lights when you leave the room, and compost.
This advice assumes that the reader’s goal is to personally exculpate themselves or their family from global warming — and to assuage their own guilt for participating in a polluting system.
At its most sophisticated, this advice can be valuable insofar as it can help you cut your marginal carbon emissions. The most precise versions of these recommendations often speak in terms of emissions abatement: They might advise, say, that switching to a plant-based diet could save 0.8 tons of carbon emissions a year.
You’ll see some of that kind of recommendation in this project: It’s a valid way to think about individual actions, and it works especially well in some domains, such as food. But it’s not, in our view, the best way of thinking about individual action to fight climate change.
That’s because it is essentially impossible to exculpate yourself from climate change. That’s not being fatalistic. It’s just a fact. Simply by living in the year 2024, your life is enmeshed in a sprawling economic network that devours fossil fuels as its great lifestyle subsidy. Look out the nearest window — do you see cars, asphalt, power lines, sidewalks, buildings? Do you see steel-framed structures or a plane cutting its way across the sky? None of those things could exist without fossil fuels. And unless you’re looking into wild and unkempt wilderness (if so, lucky you!), then even the plants and grass out your window, the food in your pantry, grew up on fertilizer that was manufactured with fossil fuels. If you live in a rich or middle-income country, buy goods and clothes, eat food, use electricity, or even leave your house by any means other than walking, then you are responsible, to some degree, for climate change.
Trying to zero out your personal carbon footprint, in other words, is a fool’s errand. What you can do, however, is maximize the degree to which you’re building a new, post-fossil-fuel world.
To be clear, we don’t mean that in a woo-woo way. We’re not saying you should imagine a kumbaya world where we all hold hands and take public transit to the nearest all-volunteer renewable-powered co-op. We’re saying that there are real, already existing products and technologies that must become a bigger part of today’s built environment if we are to have any hope of solving climate change. What you can do — and what we recommend in this guide — is help take those technologies from the fringes into the center of everyday life. If you want to decarbonize the whole planet, you should think about decarbonizing your life.
What we have tried to do here is not focus on how to reduce your marginal emissions — the number of tons that you, personally, are responsible for pumping into the environment. Instead, we’re trying to help you understand how to focus on high-leverage actions — the kinds of choices that can drive change throughout the energy system. That’s why in this guide you’ll find advice on how to switch to an EV, buy zero-carbon electricity, make your home more energy-efficient, and electrify your appliances. We also recommend these in the order that we think they’ll be most effective — to learn more about how we reached that ranking, read about our methodology here.
The kind of shifts we advise in this guide, to be clear, won’t solve climate change on their own. But they will help you alter the systems in which you’re enmeshed, and they’ll make you a smarter climate citizen.
Flying is maybe the trickiest climate question. Although it makes up a relatively small share of both global and U.S. emissions — about 2% each — it is among the most climate-polluting activities many Americans will do on a minute-to-minute basis. (Although if you live in a dense and walkable city like New York, San Francisco, or Washington, D.C., but travel frequently, then flying may make up a large share of your emissions.) It is probably also the most difficult “everyday” activity to decarbonize.
There is no practical substitute for long-distance or transcontinental flying. Today, only one ocean liner regularly makes the journey from New York to London, and it departs from each city only once a month. And unless you hitch a ride on a container ship, there is literally no slow boat to China. If you want to travel abroad, then you must fly. Even within the United States, there is essentially no substitute for long-distance flights. Europeans and East Asians can rely on superior long-distance rail systems, but America’s extensive road network, unusually high infrastructure costs, sclerotic rail agency, and chronic lack of transit investment mean that Americans are stuck with flying or driving.
Commercial aviation is a miracle of the modern world: It facilitates a level of global connectedness and international communication that earlier generations could only dream of. Affordable and long-distance passenger flight is, in many ways, the crowning achievement of our highly technical society, and it allows for the amount of global immigration and mass tourism that defines the modern world. (If you have a private jet, of course, stop using it. Because so few people take each flight, private jets are uniquely destructive for the climate, emitting every seven hours what the average American emits all year.)
Fossil fuels’ weight and energy density is ideal for flying. There is, right now, no drop-in replacement for jet fuel that is being produced at scale. So while we have some advice about how to mitigate your climate pollution from flying, it won’t make up a large part of this guide. Reduce the number of flights you take if you can, sure, and take more direct flights if possible. But the truth is that for now, there are smarter and more high-leverage decisions that you can make.
Only decarbonization can get us closer to tackling climate change once and for all. Our belief at Heatmap is that if you care about climate change, then decarbonization — and not mere emissions reductions — should be your guiding star. If you want to follow that star, then read on.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The Trump administration has started to weaken the rules requiring cars and trucks to get more fuel-efficient every year,
In a press event on Wednesday in the Oval Office, flanked by advisors and some of the country’s top auto executives, President Trump declared that the old rules “forced automakers to build cars using expensive technologies that drove up costs, drove up prices, and made the car much worse.”
He said that the rules were part of the “green new scam” and that ditching them would save consumers some $1,000 every year. That framed the rollback as part of the president’s seeming pivot to affordability, which has happened since Democrats trounced Republicans in the November off-cycle elections.
That pivot remains belated and at least a little half-hearted: On Wednesday, Trump made no mention of dropping the auto tariffs that are raising imported car prices by perhaps $5,000 per vehicle, according to Cox Automotive. Ditching the fuel economy rules, too, could increase demand for gasoline and thus raise prices at the pump — although they remain fairly low right now, with the national average below $3 a gallon.
What’s more interesting — and worrying — is that the rules fit into the administration’s broader war on innovation in the American car and light-duty truck sector. The United States essentially has two ways to regulate pollution from cars and light trucks: It can limit greenhouse gas emissions from new cars and trucks, and it can require the fuel economy from new vehicles to get a little better every year.
Trump is pulling screws and wires out of both of these systems. In the first category, he’s begun to unwind the Environmental Protection Agency’s limits on carbon pollution from cars and light duty trucks, which he termed an “EV mandate.” (The Biden-era rules sought to require about half of new car sales be electric by 2030, although hybrids could help meet that standard.) Trump is also trying to keep the EPA from ever regulating anything to do with carbon pollution again by going after the agency’s “Endangerment Finding” — a scientific assessment that greenhouse gases are dangerous to human wellbeing.
That’s only half of the president’s war on air pollution rules, though. Since the oil crises of the 1970s, the National Highway Traffic Safety Administration has regulated fuel economy for new vehicles under the Corporate Average Fuel Economy, or CAFE, standards. When these rules are binding, the agency can require new cars and trucks sold in the U.S. to get a little more fuel-efficient every year. The idea is that these rules help limit the country’s gasoline consumption, thus keeping a lid on oil prices and letting the whole economy run more efficiently.
President Trump’s signature tax law, the One Big Beautiful Bill Act, already eliminated the fines that automakers have to pay when they fail to meet the standard. That change, pushed by Senator Ted Cruz of Texas, effectively rendered the regulation toothless. But now Trump is weakening the rules just for good measure. (At the press conference on Wednesday, Cruz stood behind the president — and next to Jim Farley, the CEO of Ford.)
Under the new Trump proposal, automakers would need to achieve only an average of 34.5 miles per gallon in 2031. Under Biden’s proposal, they needed to hit 50 miles per gallon that year.
Those numbers, I should add, are somewhat deceptive — because of how CAFE standards are calculated, the headline number is 20% to 30% stricter than a real-world fuel economy number. In essence, that means the new Trump era rules will come out to a real-world mile-per-gallon number in the mid-to-high 20s. That will give automakers ample regulatory room to sell more inefficient and gas-guzzling sport utility vehicles and pickups, which remain more profitable than electric vehicles.
Which is not ideal for air pollution or the energy transition. But the real risk for the American automaking industry is not that Ford might churn out a few extra Escapes over the next several years. It’s that the Trump proposal would eliminate the ability for automakers to trade compliance credits to meet the rules. These credit markets — which allow manufacturers of gas guzzlers to redeem themselves by buying credits generated by cleaner cars — have been a valuable revenue source for new vehicle companies like Tesla, Lucid, and Rivian. The Trump proposal would cut off that revenue — and with it, one of the few remaining ways that automakers are cross-subsidizing EV innovation in the United States.
During his campaign, President Trump said that he wanted the “cleanest air.” That promise is looking as incorrect as his pledge to cut electricity costs in half within a year.
How will America’s largest grid deal with the influx of electricity demand? It has until the end of the year to figure things out.
As America’s largest electricity market was deliberating over how to reform the interconnection of data centers, its independent market monitor threw a regulatory grenade into the mix. Just before the Thanksgiving holiday, the monitor filed a complaint with federal regulators saying that PJM Interconnection, which spans from Washington, D.C. to Ohio, should simply stop connecting new large data centers that it doesn’t have the capacity to serve reliably.
The complaint is just the latest development in a months-long debate involving the electricity market, power producers, utilities, elected officials, environmental activists, and consumer advocates over how to connect the deluge data centers in PJM’s 13-state territory without further increasing consumer electricity prices.
The system has been pushed into crisis by skyrocketing capacity auction prices, in which generators get paid to ensure they’re available when demand spikes. Those capacity auction prices have been fueled by high-octane demand projections, with PJM’s summer peak forecasted to jump from 154 gigawatts to 210 gigawatts in a decade. The 2034-35 forecast jumped 17% in just a year.
Over the past two two capacity auctions, actual and forecast data center growth has been responsible for over $16.6 billion in new costs, according to PJM’s independent market monitor; by contrast, the previous year’s auction generated a mere $2.2 billion. This has translated directly to higher retail electricity prices, including 20% increases in some parts of PJM’s territory, like New Jersey. It has also generated concerns about reliability of the whole system.
PJM wants to reform how data centers interconnect before the next capacity auction in June, but its members committee was unable to come to an agreement on a recommendation to PJM’s board during a November meeting. There were a dozen proposals, including one from the monitor; like all the others, it failed to garner the necessary two-thirds majority vote to be adopted formally.
So the monitor took its ideas straight to the top.
The market monitor’s complaint to the Federal Energy Regulatory Commission tracks closely with its plan at the November meeting. “PJM is currently proposing to allow the interconnection of large new data center loads that it cannot serve reliably and that will require load curtailments (black outs) of the data centers or of other customers at times. That result is not consistent with the basic responsibility of PJM to maintain a reliable grid and is therefore not just and reasonable,” the filing said. “Interconnecting large new data center loads when adequate capacity is not available is not providing reliable service.”
A PJM spokesperson told me, “We are still reviewing the complaint and will reserve comment at this time.”
But can its board still get a plan to FERC and avoid another blowout capacity auction?
“PJM is going to make a filing in December, no matter what. They have to get these rules in place to get to that next capacity auction in June,” Jon Gordon, policy director at Advanced Energy United, told me. “That’s what this has been about from the get-go. Nothing is going to stop PJM from filling something.”
The PJM spokesperson confirmed to me that “the board intends to act on large load additions to the system and is expected to provide an indication of its next steps over the next few weeks.” But especially after the membership’s failure to make a unified recommendation, what that proposal will be remains unclear. That has been a source of agita for the organizations’ many stakeholders.
“The absence of an affirmative advisory recommendation from the Members Committee creates uncertainty as to what reforms PJM’s Board of Managers may submit to the Federal Energy Regulatory Commission (FERC), and when stakeholders can expect that submission,” analysts at ClearView Energy Partners wrote in a note to clients. In spite of PJM’s commitments, they warned that the process could “slip into January,” which would give FERC just enough time to process the submission before the next capacity auction.
One idea did attract a majority vote from PJM’s membership: Southern Maryland Electric Cooperative’s, which largely echoed the PJM board’s own plan with some amendments. That suggestion called for a “Price Responsive Demand” system, in which electricity customers would agree to reduce their usage when wholesale prices spike. The system would be voluntary, unlike an earlier PJM proposal, which foresaw forcing large customers to curtail their power. “The load elects to not take on a capacity obligation, therefore does not pay for capacity, and is required to reduce demand during stressed system conditions,” PJM explained in an update. The Southern Maryland plan tweaks the PRD system to adjust its pricing mechanism. but largely aligns with what PJM’s staff put forward.
“There’s almost no real difference between the PJM proposal and that Southern Maryland proposal,” Gordon told me.
That might please restive stakeholders, or at least be something PJM’s board could go forward with knowing that the balance of its voting membership agreed with something similar.
“We maintain our view that a final proposal could resemble the proposed solution package from PJM staff,” the ClearView note said. “We also think the Board could propose reforms to PJM’s PRD program. Indeed, as noted above, SMECO’s revisions to the service gained majority support.”
The PJM plan also included relatively uncontroversial reforms to load forecasting to cut down on duplicated requests and better share information, and an “expedited interconnection track” on which new, large-scale generation could be fast-tracked if it were signed off on by a state government “to expedite consideration of permitting and siting.”
Gordon said that the market monitor’s complaint could be read as the organization “desperately trying to get FERC to weigh in” on its side, even if PJM is more likely to go with something like its own staff-authored submission.
“The key aspect of the market monitor’s proposal was that PJM should not allow a data center to interconnect until there was enough generation to supply them,” Gordon explained. During the meeting preceding the vote, “PJM said they didn’t think they had the authority to deny someone interconnection.”
This dispute over whether the electricity system has an obligation to serve all customers has been the existential question making the debate about how to serve data centers extra angsty.
But PJM looks to be trying to sidestep that big question and nibble around the edges of reform.
“Everybody is really conflicted here,” Gordon told me. “They’re all about protecting consumers. They don’t want to see any more increases, obviously, and they want to keep the lights on. Of course, they also want data center developers in their states. It’s really hard to have all three.”
Atomic Canyon is set to announce the deal with the International Atomic Energy Agency.
Two years ago, Trey Lauderdale asked not what nuclear power could do for artificial intelligence, but what artificial intelligence could do for nuclear power.
The value of atomic power stations to provide the constant, zero-carbon electricity many data centers demand was well understood. What large language models could do to make building and operating reactors easier was less obvious. His startup, Atomic Canyon, made a first attempt at answering that by creating a program that could make the mountains of paper documents at the Diablo Canyon nuclear plant, California’s only remaining station, searchable. But Lauderdale was thinking bigger.
In September, Atomic Canyon inked a deal with the Idaho National Laboratory to start devising industry standards to test the capacity of AI software for nuclear projects, in much the same way each update to ChatGPT or Perplexity is benchmarked by the program’s ability to complete bar exams or medical tests. Now, the company’s effort is going global.
On Wednesday, Atomic Canyon is set to announce a partnership with the United Nations International Atomic Energy Agency to begin cataloging the United Nations nuclear watchdog’s data and laying the groundwork for global standards of how AI software can be used in the industry.
“We’re going to start building proof of concepts and models together, and we’re going to build a framework of what the opportunities and use cases are for AI,” Lauderdale, Atomic Canyon’s chief executive, told me on a call from his hotel room in Vienna, Austria, where the IAEA is headquartered.
The memorandum of understanding between the company and the UN agency is at an early stage, so it’s as yet unclear what international standards or guidelines could look like.
In the U.S., Atomic Canyon began making inroads earlier this year with a project backed by the Institute of Nuclear Power Operators, the Nuclear Energy Institute, and the Electric Power Research Institute to create a virtual assistant for nuclear workers.
Atomic Canyon isn’t the only company applying AI to nuclear power. Last month, nuclear giant Westinghouse unveiled new software it’s designing with Google to calculate ways to bring down the cost of key components in reactors by millions of dollars. The Nuclear Company, a startup developer that’s aiming to build fleets of reactors based on existing designs, announced a deal with the software behemoth Palantir to craft the software equivalent of what the companies described as an “Iron Man suit,” able to swiftly pull up regulatory and blueprint details for the engineers tasked with building new atomic power stations.
Lauderdale doesn’t see that as competition.
“All of that, I view as complementary,” he said.
“There is so much wood to chop in the nuclear power space, the amount of work from an administrative perspective regarding every inch of the nuclear supply chain, from how we design reactors to how we license reactors, how we regulate to how we do environmental reviews, how we construct them to how we maintain,” he added. “Every aspect of the nuclear power life cycle is going to be transformed. There’s no way one company alone could come in and say, we have a magical approach. We’re going to need multiple players.”
That Atomic Canyon is making inroads at the IAEA has the potential to significantly broaden the company’s reach. Unlike other energy sources, nuclear power is uniquely subject to international oversight as part of global efforts to prevent civilian atomic energy from bleeding over into weapons production.
The IAEA’s bylaws award particular agenda-setting powers to whatever country has the largest fleet of nuclear reactors. In the nearly seven decades since the agency’s founding, that nation has been the U.S. As such, the 30 other countries with nuclear power have largely aligned their regulations and approaches to the ones standardized in Washington. When the U.S. artificially capped the enrichment levels of traditional reactor fuel at 5%, for example, the rest of the world followed.
That could soon change, however, as China’s breakneck deployment of new reactors looks poised to vault the country ahead of the U.S. sometime in the next decade. It wouldn’t just be a symbolic milestone. China’s emergence as the world’s preeminent nuclear-powered nation would likely come with Beijing’s increased influence over other countries’ atomic energy programs. As it is, China is preparing to start exporting its reactors overseas.
The role electricity demand from the data centers powering the AI boom has played in spurring calls for new reactors is undeniable. But if AI turns out to have as big an impact on nuclear operations as Lauderdale predicts, an American company helping to establish the global guidelines could help cement U.S. influence over a potentially major new factor in how the industry works for years, if not decades to come.