Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Podcast

Humanity’s Most Abundant Material Is a Huge Climate Problem

Inside episode 25 of Shift Key.

Cement production.
Heatmap Illustration/Getty Images

Jesse is on vacation until August, so this is a special, Rob-only summer episode of Shift Key.

The world uses about 30 billion tons of concrete every year — more than any other material except water. It is the most ubiquitous human-made substance in the global economy. It’s also a huge climate problem. Producing cement, which is the key ingredient in concrete, generates roughly 8% of global annual greenhouse gas emissions.

Cody Finke has a plan to change that. He is the chief executive officer and cofounder of Brimstone, a startup that says it can cheaply produce ordinary Portland cement — the kind used in construction worldwide — without carbon emissions. This week, Rob chats with Finke about why cement’s carbon emissions aren’t from fossil fuels, why there are fewer cement plants than you might think, and the all-important difference between cement and concrete.

This episode of Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap.

Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.

You can also add the show’s RSS feed to your podcast app to follow us directly.

Here is an excerpt from our conversation:

Robinson Meyer: Concrete is such an archetypal big machine problem in decarbonization. Because not only is it carbon intensive, but also — like car engines or like plane engines but, notably, unlike power plants — maybe like power plants — the technology to do it is extremely dispersed. There are hundreds of thousands of concrete plants around the world, and they all have to be replaced to decarbonize this process. It’s just a huge, huge scaling endeavor, and one that, forces you to reckon with the material implications of decarbonization in a way that, I think, it can often be easier to skip over or, just think, in the form of electricity: Oh, we can just drop new power plants in, we can build renewables. But that’s not how decarbonizing concrete will work.

Cody Finke: I would actually want to challenge that slightly.

Meyer: Perfect.

Finke: So, for many solutions, that’s the case because you’re absolutely right, there are hundreds of thousands of concrete plants. But there are not hundreds of thousands of cement plants. Cement is the binder in concrete, and for the listeners —

Meyer: Yeah, let’s actually do this because clearly I also don’t fully understand.

Finke: Concrete’s the building material. It is the most consumed material on the planet. We make 40 to 50 billion tons of it every year as humans. Concrete is sand, gravel, water, and cement — cement is the glue. Without cement, concrete would just be a pile of sand and gravel — a wet pile of sand and gravel. Cement is essential for turning that pile of sand and gravel into a pourable rock.

But cement is only about 10% of concrete — 10% to 20% — and it's made in large, centralized facilities that are located basically around big population centers. There are only 2,000 or 3,000 cement plants in the world. So it depends on your solution, right? If your solution is making a novel material, then it may require working at the concrete level, which can be good and bad. There’s a lot of those facilities, but they’re also a bit cheaper. There’s good and bad attributes of that.

But if you were to do something like what Brimstone is doing, which is making ordinary Portland cement, then what you have to do is replace those 2,000 or 3,000 cement plants, which is still a big number —

Meyer: It is still a big number, but actually not a very big number.

This episode of Shift Key is sponsored by …

Watershed’s climate data engine helps companies measure and reduce their emissions, turning the data they already have into an audit-ready carbon footprint backed by the latest climate science. Get the sustainability data you need in weeks, not months. Learn more at watershed.com.

As a global leader in PV and ESS solutions, Sungrow invests heavily in research and development, constantly pushing the boundaries of solar and battery inverter technology. Discover why Sungrow is the essential component of the clean energy transition by visiting sungrowpower.com.

Music for Shift Key is by Adam Kromelow.

Green

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
AM Briefing

Mineral Mates

On LIHEAP saved, copper king, and Drax’s ‘betrayal’

JD Vance.
Heatmap Illustration/Getty Images

Current conditions: The snow squalls and cold air headed from the Ohio Valley to the Northeast are coming with winds of up to 55 miles per hour • A “western disturbance,” an extratropical storm that originates in the Mediterranean and travels eastward, is set to arrive in India and bring heavy snow to the Himalayas • Tropical Storm Basyang made landfall over the Philippines this morning, forcing Cebu City to cancel all in-person classes for public school students.

THE TOP FIVE

1. White House kicks off critical minerals summit

Vice President JD Vance delivered a 40-minute speech Wednesday appealing to 54 countries and the European Union to join a trading alliance led by the United States to establish a supply of critical minerals that could meaningfully rival China. The agreement would create a “preferential trade zone” meant to be “protected from disruptions through enforceable price floors.” The effort comes in response to years of export controls from Beijing that have sent the prices of key minerals over which China has near monopolies skyrocketing. “This morning, the Trump administration is proposing a concrete mechanism to return the global critical minerals market to a healthier, more competitive state,” Vance said at the State Department’s inaugural Critical Minerals Ministerial in Washington.

Keep reading...Show less
Blue
Energy

The Super Safe, Super Expensive Nuclear Fuel That’s Making a Comeback

Microreactor maker Antares Nuclear just struck a deal with BWX Technologies to produce TRISO.

TRISO fuel.
Heatmap Illustration/Getty Images, Department of Energy

Long before the infamous trio of accidents at Three Mile Island, Chernobyl, and Fukushima, nuclear scientists started working on a new type of fuel that would make a meltdown nearly impossible. The result was “tri-structural isotropic” fuel, better known as TRISO.

The fuel encased enriched uranium kernels in three layers of ceramic coating designed to absorb the super hot, highly radioactive waste byproducts that form during the atom-splitting process. In theory, these poppyseed-sized pellets could have negated the need for the giant concrete containment vessels that cordon off reactors from the outside world. But TRISO was expensive to produce, and by the 1960s, the cheaper low-enriched uranium had proved reliable enough to become the industry standard around the globe.

Keep reading...Show less
Climate Tech

Lunar Energy Raises $232 Million to Scale Virtual Power Plants

The startup — founded by the former head of Tesla Energy — is trying to solve a fundamental coordination problem on the grid.

A Lunar Energy module.
Heatmap Illustration/Lunar Energy

The concept of virtual power plants has been kicking around for decades. Coordinating a network of distributed energy resources — think solar panels, batteries, and smart appliances — to operate like a single power plant upends our notion of what grid-scale electricity generation can look like, not to mention the role individual consumers can play. But the idea only began taking slow, stuttering steps from theory to practice once homeowners started pairing rooftop solar with home batteries in the past decade.

Now, enthusiasm is accelerating as extreme weather, electricity load growth, and increased renewables penetration are straining the grid and interconnection queue. And the money is starting to pour in. Today, home battery manufacturer and VPP software company Lunar Energy announced $232 million in new funding — a $102 million Series D round, plus a previously unannounced $130 million Series C — to help deploy its integrated hardware and software systems across the U.S.

Keep reading...Show less
Blue