You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Inside episode seven of Shift Key.
Few people have shaped Bidenomics more than Brian Deese. From 2021 to 2023, Deese led the National Economic Council at the White House, serving as President Joe Biden’s top economic aide. He’s now an Innovation Fellow at MIT, where he helps lead the new Clean Investment Monitor project.
In part two of Shift Key’s conversation with Deese, we discuss electric vehicles, the future of U.S.-China trade relations, and whether the Big Three automakers can survive.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Jesse Jenkins: I recently traveled to Australia in December. And there's a country that basically ceded its auto industry in the 1990s to early 2000. They basically said, you know what, we're done trying to compete and keep our domestic manufacturing sector alive. And as a result, now have very low tariffs for imports, everything's imported, and have embraced Chinese imports of vehicles, not just EVs, but also, you know, I was surprised to see all kinds of, you know, Chinese badged brands like SAIC and Great Walls Motors and Haval and others on the roads there.
So I guess the question, maybe just to frame it this way, you know, I have my thoughts on the answers too, but I'd love to get your direct answer is like, why don't we want Chinese cars on the roads here? Why don't we want a $16,000 EV, as opposed to in the same category as the Chevy Bolt EUV, which costs $10,000 more than that. Wouldn't that be good for American consumers, good for decarbonization? Talk through the thinking about how to balance those kinds of concerns.
Brian Deese: Yeah, so I've heard this expressed and in ways that was less thoughtful than your T up recently around, you know, damn it, we just need to decide if we like cheap electric vehicles more than we hate China and that's, you know, that's just, you know, as climate as climate forward thinkers, that question is stated as a leading question.
And I do think to really understand this, I think that that question starts from the wrong premise and then it ends up reaching the wrong conclusion implicitly in what it suggests, right? Because it starts from the premise that China's a market-based economy and a market-based actor, but more importantly, it starts from the premise that we're operating in a balanced and sustainable global trading regime and that why can't we just take the benefit of lower cost goods?
But if we step back, in terms of the global trading system, we have this enormous imbalance because China has this enormous excess savings. And what they're trying to do to try to solve the acute economic challenges that they face is to plow that into manufacturing with the explicit goal of trying to dominate, not just try to gain competitive edge, but dominate particular industries. And when they do that and then through explicit status strategies, they flood markets with cheap goods, we, the recipient countries, end up paying a lot of the cost of those Chinese subsidies and those Chinese policies.
Jenkins: What do you mean by that? Paying in what way?
Deese: We end up paying by our own industries, our own industries, our own capabilities being diminished and derogated in a way that they wouldn't have that imbalance not existed.
So I like to flip the question, right? And actually say, like China needs to decide if it loves this unsustainable, unbalanced, in many cases, illegal manufacturing strategy more than it loves the kind of, or more than it hates the kind of domestic reforms it would actually need to take to boost domestic consumption, produce more balanced growth as it becomes a more mature economy, and as it becomes a larger anchor of the global economic system.
And I don't have any illusions that China is going to engage in that, but I think some of the approach to this issue in the past has been predicated on the idea that if we in the United States operate by ignoring those realities and by trying to engage with by lowering trade barriers, that might induce China to move in that direction. And that, I think, is, that's an unsupportable hypothesis at this point.
Robinson Meyer: Where do you see this ending? Because what you're describing, I agree, is very well supported. The phenomenon you're describing where China's excess savings cause it to have all these manufactured goods that Chinese people can't buy and so therefore it has to export them to the world. That's like a flaw in the post-1945 global economy we set up, right? Because you are punished as a country if you have excess spending by your bondholders, by financial institutions. You are not punished as a country if you have excess saving. And so I think what worries people is that, well, we shut down our market to China in some regards, where does this eventually lead? Like, how do we eventually force a Chinese structural adjustment, it just starts to go quite dark places quite fast. So I guess where do you see this process that we're engaged in ending up?
Deese: I think the destination and the goal should be toward a more sustainable equilibrium, which doesn't mean a perfect equilibrium, but more sustainable equilibrium. And I think the answer to that for American policy, I think is some version of the policy mix that the Biden administration has put together: invest domestically in industrial capacity, impose costs on China where they're actually clearly in unfairly seeking to perpetuate that balance or to accelerate that balance by dominating in particular industries and also protect core technologies that are dual use and have national security implications.
That is hard, it's not easy, but it's possible to put an approach like that in place, and also to recognize that the goal of the strategy is not then to have China-free supply chains.
And when, again, President Biden's predecessor goes out and says he wants to eliminate imports from China over four years, that's utterly infeasible and shouldn't be our policy goal. It shouldn't be the way we think about what we're trying to accomplish. It shouldn't be the way we engage with the Chinese in terms of finding a more sustainable equilibrium.
But it is totally possible in the electric vehicle market for there to be a global market that is not so dominated by China that then there's no room to build competitive alternatives, right?
And we see this in the United States as well. I take your point, Jesse, about the Bolt that you made previously — $10,000 more than a BYD equivalent — but I bought my Bolt a year or two ago and it was sticker price equivalent with the ICE equivalent in the U.S. market before you take into account total cost of ownership.
You know now that particular car and the trajectory since then and we could get into we could get into company-specific decisions …
Jenkins: You can put that aside, yeah.
Deese: But you know, it's possible. I mean, Tesla as like, as a phenomenon, right? And we should be for creating the space for competition and for innovation and for the United States to maintain an important, resilient share in that. Now, that's hard.
This episode of Shift Key is sponsored by…
Advanced Energy United educates, engages, and advocates for policies that allow our member companies to compete to power our economy with 100% clean energy, working with decision makers and energy market regulators to achieve this goal. Together, we are united in our mission to accelerate the transition to 100% clean energy in America. Learn more at advancedenergyunited.org/heatmap
KORE Power provides the commercial, industrial, and utility markets with functional solutions that advance the clean energy transition worldwide. KORE Power's technology and manufacturing capabilities provide direct access to next generation battery cells, energy storage systems that scale to grid+, EV power & infrastructure, and intuitive asset management to unlock energy strategies across a myriad of applications. Explore more at korepower.com.
Music for Shift Key is by Adam Kromelow.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
It would have delivered a gargantuan 6.2 gigawatts of power.
The Bureau of Land Management says the largest solar project in Nevada has been canceled amidst the Trump administration’s federal permitting freeze.
Esmeralda 7 was supposed to produce a gargantuan 6.2 gigawatts of power – equal to nearly all the power supplied to southern Nevada by the state’s primary public utility. It would do so with a sprawling web of solar panels and batteries across the western Nevada desert. Backed by NextEra Energy, Invenergy, ConnectGen and other renewables developers, the project was moving forward at a relatively smooth pace under the Biden administration, albeit with significant concerns raised by environmentalists about its impacts on wildlife and fauna. And Esmeralda 7 even received a rare procedural win in the early days of the Trump administration when the Bureau of Land Management released the draft environmental impact statement for the project.
When Esmeralda 7’s environmental review was released, BLM said the record of decision would arrive in July. But that never happened. Instead, Donald Trump issued an executive order as part of a deal with conservative hardliners in Congress to pass his tax megabill, which also effectively repealed the Inflation Reduction Act’s renewable electricity tax credits. This led to subsequent actions by Interior Secretary Doug Burgum to freeze all federal permitting decisions for solar energy.
Flash forward to today, when BLM quietly updated its website for Esmeralda 7 permitting to explicitly say the project’s status is “cancelled.” Normally when the agency says this, it means developers pulled the plug.
I’ve reached out to some of the companies behind Esmeralda 7 but was unable to reach them in time for publication. If I hear from them confirming the project is canceled – or that BLM is wrong in some way – I will let you know.
It’s not perfect, but pretty soon, it’ll be available for under $30,000.
Here’s what you need to know about the rejuvenated Chevrolet Bolt: It’s back, it’s better, and it starts at under $30,000.
Although the revived 2027 Bolt doesn’t officially hit the market until January 2026, GM revealed the new version of the iconic affordable EV at a Wednesday evening event at the Universal Studios backlot in Los Angeles. The assembled Bolt owners and media members drove the new cars past Amity Island from Jaws and around the Old West and New York sets that have served as the backdrops of so many television shows and movies. It was star treatment for a car that, like its predecessor, isn’t the fanciest EV around. But given the giveaway patches that read “Chevy Bolt: Back by popular demand,” it’s clear that GM heard the cries of people who missed having the plucky electric hatchback on the market.
The Bolt died at the height of its powers. The original Bolt EV and Bolt EUV sold in big numbers in the late 2010s and early 2020s, powered by a surprisingly affordable price compared to competitor EVs and an interior that didn’t feel cramped despite its size as a smallish hatchback. In 2023, the year Chevy stopped selling it, the Bolt was the third-best-selling EV in America after Tesla’s top two models.
Yet the original had a few major deficiencies that reflected the previous era of EVs. The most egregious of which was its charging speed that topped out at around 50 kilowatts. Given that today’s high-speed chargers can reach 250 to 350 kilowatts — and an even faster future could be on the way — the Bolt’s pit stops on a road trip were a slog that didn’t live up to its peppy name.
Thankfully, Chevy fixed it. Charging speed now reaches 150 kilowatts. While that figure isn’t anywhere near the 350 kilowatts that’s possible in something like the Hyundai Ioniq 9, it’s a threefold improvement for the Bolt that lets it go from 10% to 80% charged in a respectable 26 minutes. The engineers said they drove a quartet of the new cars down old Route 66 from the Kansas City area, where the Bolt is made, to Los Angeles to demonstrate that the EV was finally ready for such an adventure.
From the outside, the 2027 Bolt is virtually indistinguishable from the old car, but what’s inside is a welcome leap forward. New Bolt has a lithium-ion-phosphate, or LFP battery that holds 65 kilowatt-hours of energy, but still delivers 255 miles of max range because of the EV’s relatively light weight. Whereas older EVs encourage drivers to stop refueling at around 80%, the LFP battery can be charged to 100% regularly without the worry of long-term damage to the battery.
The Bolt is GM’s first EV with the NACS charging standard, the former Tesla proprietary plug, which would allow the little Chevy to visit Tesla Superchargers without an adapter (though its port placement on the front of the driver’s side is backwards from the way older Supercharger stations are built). Now built on GM’s Ultium platform, the Bolt shares its 210-horsepower electric motor with the Chevy Equinox EV and gets vehicle-to-load capability, meaning you’ll be able to tap into its battery energy for other uses such as powering your home.
But it’s the price that’s the real wow factor. Bolt will launch with an RS version that gets the fancier visual accents and starts at $32,000. The Bolt LT that will be available a little later will eventually start as low as $28,995, a figure that includes the destination charge that’s typically slapped on top of a car’s price, to the tune of an extra $1,000 to $2,000 on delivery. Perhaps it’s no surprise that GM revealed this car just a week after the end of the $7,500 federal tax credit for EV purchases (and just a day after Tesla announced its budget versions of the Model Y and Model 3). Bringing in a pretty decent EV at under $30,000 without the help of a big tax break is a pretty big deal.
The car is not without compromises. Plenty of Bolt fans are aghast that Chevy abandoned the Apple CarPlay and Android Auto integrations that worked with the first Bolt in favor of GM’s own built-in infotainment system as the only option. Although the new Bolt was based on the longer, “EUV” version of the original, this is still a pretty compact car without a ton of storage space behind the back seats. Still, for those who truly need a bigger vehicle, there’s the Chevy Equinox EV.
For as much time as I’ve spent clamoring for truly affordable EVs that could compete with entry-level gas cars on prices, the Bolt’s faults are minor. At $29,000 for an electric vehicle in the U.S., there is practically zero competition until the new Nissan Leaf arrives. The biggest threats to the Bolt are America’s aversion to small cars and the rapid rates of depreciation that could allow someone to buy a much larger, gently used EV for the price of the new Chevy. But the original Bolt found a steady footing among drivers who wanted that somewhat counter-cultural car — and this one is a lot better.
“Old economy” companies like Caterpillar and Williams are cashing in by selling smaller, less-efficient turbines to impatient developers.
From the perspective of the stock market, you’re either in the AI business or you’re not. If you build the large language models pushing out the frontiers of artificial intelligence, investors love it. If you rent out the chips the large language models train on, investors love it. If you supply the servers that go in the data centers that power the large language models, investors love it. And, of course, if you design the chips themselves, investors love it.
But companies far from the software and semiconductor industry are profiting from this boom as well. One example that’s caught the market’s fancy is Caterpillar, better known for its scale-defying mining and construction equipment, which has become a “secular winner” in the AI boom, writes Bloomberg’s Joe Weisenthal.
Typically construction businesses do well when the overall economy is doing well — that is, they don’t typically take off with a major technological shift like AI. Now, however, Caterpillar has joined the ranks of the “picks and shovels” businesses capitalizing on the AI boom thanks to its gas turbine business, which is helping power OpenAI’s Stargate data center project in Abilene, Texas.
Just one link up the chain is another classic “old economy” business: Williams Companies, the natural gas infrastructure company that controls or has an interest in over 33,000 miles of pipeline and has been around in some form or another since the early 20th century.
Gas pipeline companies are not supposed to be particularly exciting, either. They build large-scale infrastructure. Their ratemaking is overseen by federal regulators. They pay dividends. The last gas pipeline company that got really into digital technology, well, uh, it was Enron.
But Williams’ shares are up around 28% in the past year — more than Caterpillar. That’s in part, due to its investing billions in powering data centers with behind the meter natural gas.
Last week, Williams announced that it would funnel over $3 billion into two data center projects, bringing its total investments in powering AI to $5 billion. This latest bet, the company said, is “to continue to deliver speed-to-market solutions in grid-constrained markets.”
If we stipulate that the turbines made by Caterpillar are powering the AI boom in a way analogous to the chips designed by Nvidia or AMD and fabricated by TSMC, then Williams, by developing behind the meter gas-fired power plants, is something more like a cloud computing provider or data center developer like CoreWeave, except that its facilities house gas turbines, not semiconductors.
The company has “seen the rapid emergence of the need for speed with respect to energy,” Williams Chief Executive Chad Zamarin said on an August earnings call.
And while Williams is not a traditional power plant developer or utility, it knows its way around natural gas. “We understand pipeline capacity,” Zamarin said on a May earnings call. “We obviously build a lot of pipeline and turbine facilities. And so, bringing all the different pieces together into a solution that is ready-made for a customer, I think, has been truly a differentiator.”
Williams is already behind the Socrates project for Meta in Ohio, described in a securities filing as a $1.6 billion project that will provide 400 megawatts of gas-fired power. That project has been “upsized” to $2 billion and 750 megawatts, according to Morgan Stanley analysts.
Meta CEO Mark Zuckerberg has said that “energy constraints” are a more pressing issue for artificial intelligence development than whether the marginal dollar invested is worth it. In other words, Zuckerberg expects to run out of energy before he runs out of projects that are worth pursuing.
That’s great news for anyone in the business of providing power to data centers quickly. The fact that developers seem to have found their answer in the Williamses and Caterpillars of the world, however, calls into question a key pillar of the renewable industry’s case for itself in a time of energy scarcity — that the fastest and cheapest way to get power for data centers is a mix of solar and batteries.
Just about every renewable developer or clean energy expert I’ve spoken to in the past year has pointed to renewables’ fast timeline and low cost to deploy compared to building new gas-fired, grid-scale generation as a reason why utilities and data centers should prefer them, even absent any concerns around greenhouse gas emissions.
“Renewables and battery storage are the lowest-cost form of power generation and capacity,” Next Era chief executive John Ketchum said on an April earnings call. “We can build these projects and get new electrons on the grid in 12 to 18 months.” Ketchum also said that the price of a gas-fired power plant had tripled, meanwhile lead times for turbines are stretching to the early 2030s.
The gas turbine shortage, however, is most severe for large turbines that are built into combined cycle systems for new power plants that serve the grid.
GE Vernova is discussing delivering turbines in 2029 and 2030. While one manufacturer of gas turbines, Mitsubishi Heavy Industries, has announced that it plans to expand its capacity, the industry overall remains capacity constrained.
But according to Morgan Stanley, Williams can set up behind the meter power plants in 18 months. xAI’s Colossus data center in Memphis, which was initially powered by on-site gas turbines, went from signing a lease to training a large language model in about six months.
These behind the meter plants often rely on cheaper, smaller, simple cycle turbines, which generate electricity just from the burning of natural gas, compared to combined cycle systems, which use the waste heat from the gas turbines to run steam turbines and generate more energy. The GE Vernova 7HA combined cycle turbines that utility Duke Energy buys, for instance, range in output from 290 to 430 megawatts. The simple cycle turbines being placed in Ohio for the Meta data center range in output from about 14 megawatts to 23 megawatts.
Simple cycle turbines also tend to be less efficient than the large combined cycle system used for grid-scale natural gas, according to energy analysts at BloombergNEF. The BNEF analysts put the emissions difference at almost 1,400 pounds of carbon per megawatt-hour for the single turbines, compared to just over 800 pounds for combined cycle.
Overall, Williams is under contract to install 6 gigawatts of behind-the-meter power, to be completed by the first half of 2027, Morgan Stanley analysts write. By comparison, a joint venture between GE Vernova, the independent power producer NRG, and the construction company Kiewit to develop combined cycle gas-fired power plants has a timeline that could stretch into 2032.
The Williams projects will pencil out on their own, the company says, but they have an obvious auxiliary benefit: more demand for natural gas.
Williams’ former chief executive, Alan Armstrong, told investors in a May earnings call that he was “encouraged” by the “indirect business we are seeing on our gas transmission systems,” i.e. how increased natural gas consumption benefits the company’s traditional pipeline business.
Wall Street has duly rewarded Williams for its aggressive moves.
Morgan Stanley analysts boosted their price target for the stock from $70 to $83 after last week’s $3 billion announcement, saying in a note to clients that the company has “shifted from an underappreciated value (impaired terminal value of existing assets) to underappreciated growth (accelerating project pipeline) story.” Mizuho Securities also boosted its price target from $67 to $72, with analyst Gabriel Moreen telling clients that Williams “continues to raise the bar on the scope and potential benefits.”
But at the same time, Moreen notes, “the announcement also likely enhances some investor skepticism around WMB pushing further into direct power generation and, to a lesser extent, prioritizing growth (and growth capex) at the expense of near-term free cash flow and balance sheet.”
In other words, the pipeline business is just like everyone else — torn between prudence in a time of vertiginous economic shifts and wanting to go all-in on the AI boom.
Williams seems to have decided on the latter. “We will be a big beneficiary of the fast rising data center power load,” Armstrong said.