You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Inflation Reduction Act is already transforming America. But is it enough?

In the late spring, a scene happened that might have once — even a few years ago — seemed unimaginable.
Senator Joe Manchin and Energy Secretary Jennifer Granholm visited the town of Weirton, West Virginia, to celebrate the groundbreaking of a new factory for the company Form Energy. The factory will produce a new type of iron battery that could eventually store huge amounts of electricity on the grid, allowing solar and wind energy to be saved up and dispatched when needed.
Manchin was clear about why everyone was gathered in Weirton. “Today’s groundbreaking is a direct result of the Inflation Reduction Act, and this type of investment, in a community that has felt the impact of the downturn in American manufacturing, is an example of the IRA bill working as we intended,” he said.
It’s been nearly a year since the Inflation Reduction Act, President Joe Biden’s flagship climate law, passed. The law is successful. It is transforming the American energy system. And the Biden administration is implementing it as fast as it can: Since the law passed, the Treasury Department has published nearly three dozen pieces of complicated rules explaining how the IRA’s billions in subsidies can actually be used.
But is the IRA successful enough? The pace and scale of the climate challenge remains daunting. A recent report from the Rhodium Group, an energy-research firm, found that the United States would only meet its Paris Agreement goal of cutting carbon emissions in half by 2030 with more aggressive federal and state policy.
Here are some broad observations about how the IRA — and the broader project of American decarbonization — is going:
Politically, environmentally, no matter how you look at it: The power sector is the thumping heart of the I.R.A. Because engineers know how to generate electricity without producing carbon pollution — using wind turbines, solar panels, nuclear plants, and more — the sector is central to the law’s implicit plan to decarbonize the American economy, which requires, first, building as much zero-carbon electricity infrastructure as possible, while, second, shifting as much of the rest of the economy to using electricity — as opposed to oil, gas, or coal — as possible.
The electricity industry is also the site of perhaps the law’s most powerful climate policy — and its only policy tied to a national emissions-cutting goal. The law will indefinitely subsidize new zero-carbon electricity until greenhouse-gas pollution from the American power sector falls 75% below its 2022 levels. That means these tax credits could remain in effect until the 2060s, according to an analysis from the research firm Wood MacKenzie.
This was a first for American environmental law, and it remains poorly understood by the public. Even some experts claim that the electricity credits will phase out in 2032 with the I.R.A.’s other subsidies — when, in fact, 2032 is the earliest possible year that they could end.
Which is all to say that it’s early days for understanding the I.R.A.’s effect on the power sector. The data is provisional.
Yet the data is … good. Better than I expected when I started writing this article. The overwhelming majority of new electricity generation built nationwide this year — some 83% — will be wind, solar, or battery storage, according to federal data. Although that mostly reflects projects planned before the IRA was passed, it’s still a giant leap over previous years, and it suggests that the law might be giving clean electricity a boost at the margin:
The solar industry, in particular, is surging. The industry just had its best first quarter ever, with rooftop installations booming and some big utility-scale solar farms finally coming online.
But solar can’t power the entire grid, and other renewables are having more trouble. I’m particularly worried about offshore wind. To build a new offshore-wind project, companies bid for tracts of the ocean floor in a government-run auction. Yet many of those bids failed to account for 2021 and 2022’s rapid inflation, and some developers are now on the hook for projects that don’t pencil out. Most outside analysts now believe that the Biden administration will fall short of its goal to build 30 gigawatts of offshore wind by 2030.
Get one great climate story in your inbox every day:
The boom in electric vehicle and battery manufacturing is clearly the I.R.A.’s brightest spot. (The two industries are one and the same: If you have a giant battery, you’re probably going to put it in an EV; and about a third of every EV’s value comes from the battery.)
Since the IRA passed, 52 new mining or manufacturing projects have been announced, representing $56 billion in new investment, according to a tracker run by Jay Turner, a Wellesley College professor. If you zoom out to all of Biden’s term, then more than $100 billion in EV investment has been announced, which will create more than 75,000 jobs, according to the Department of Energy.
It remains to be seen, however, whether this investment will produce the kind of durable, unionized voter base that the Biden administration hopes to form. So far, much of this investment has flowed to the Sunbelt — and in particular, to a burgeoning zone of investment from North Carolina to Alabama nicknamed the “Battery Belt.” These states are right-to-work states with a low cost-of-living, like much of the states that have absorbed manufacturing investment since the 1980s.
This might make Republicans think twice about undermining the IRA, but it might also be a missed opportunity.
In order to cheaply decarbonize its grid, America needs better power lines. Building long-range, interregional electricity transmission will allow the country to funnel clean energy to where it’s needed most. According to a team led by Jesse Jenkins, a Princeton engineering professor, 80% of the IRA’s carbon-reduction benefits could be lost if the United States doesn’t quicken the pace of new transmission construction. (Other models are less worried.)
Yet the effort to build more power lines — and the broader campaign to reform some rules governing permitting and land use, especially the National Environmental Policy Act — is probably over, at least in this Congress. Republican lawmakers figured out that Democrats are desperate for transmission reform, and they were prepared to make the party pay a high price for it — too high a price for much of the caucus. The bipartisan deal to raise the debt-ceiling also contained many of the moderate permitting reforms that Democrats might have accepted as part of a broader bargain over transmission.
Democrats are now stuck hoping that the Federal Energy Regulatory Commission, or FERC, will make smaller, more technocratic improvements to the transmission process when they take a majority of the commission’s seats early next year.
The biggest programs in the IRA target mature technologies, like solar, wind, and EVs. But the law is full of unheralded programs meant to encourage the development of early-stage climate technologies, such as sustainable aviation fuel. By encouraging technological progress, these programs could abate hundreds of millions of tons of carbon a year in the decades after 2030. They may prove especially important at reducing emissions outside the United States, according to a new analysis from Rhodium Group.
Which is to say that they could be — from a world-historic perspective — some of the law’s most important policies. But for now, few of these programs have been implemented, and we don’t really know how they’re going to go.
Some of them may also be devilishly hard to set up. My colleague Emily Pontecorvo has reported on the difficulty of setting up the tax credits for green hydrogen, which are some of the law’s most generous. If successful, the credits could give the U.S. a major new industry to tackle the decarbonization challenge; if unsuccessful, they could screw up the American electricity system.
Right now, most of the law’s consumer-facing tax credits are continuations of old policies — such as the longstanding subsidy to install rooftop solar — rather than something new. Perhaps the most expansive subsidy that consumers have seen so far is the new $7,500 tax credit for leasing an electric vehicle.
But many more programs will eventually come, including the IRA’s rebates for heat pumps, induction stoves, and electric water heaters. Those programs, some of which must be administered by state offices, have largely yet to be set up. (Even so — and in keeping with other encouraging trends — heat pump sales outpaced furnace sales in the U.S. for the first time last year.)
The Department of Energy is an agency transformed. The IRA held out the opportunity that the agency could metamorphose from an R&D-focused nuclear-weapons storehouse into the federal government’s dynamo of decarbonization. The Biden administration — and Energy Secretary Jennifer Granholm — has seized that opportunity.
As I wrote earlier this year, the agency has stepped into the role of being America’s bureau of industrial policy, replete with its own in-house bank. It has published some of the most detailed and sophisticated federal industrial plans that I’ve ever seen.
And it is getting admirably specific about each of the technologies in its portfolio. In a recent report on the nascent hydrogen industry, for instance, the department said that companies might not build out enough infrastructure because they can’t count on future demand for clean hydrogen. (It’s impossible for firms to invest in making hydrogen if they can’t be sure anyone is going to buy it.) Then, earlier this week, the agency announced a new $1 billion program to buy hydrogen itself, thus providing that demand-side certainty that producers need.
Let’s return to renewables. The United States is striving — but will likely fail — to build 30 gigawatts of offshore wind by 2030. It is building a couple dozen gigawatts of new solar capacity every year. That may seem like a lot: One gigawatt of electricity is enough to power about 825,000 homes.
But annual power demand in the United States is closer to 4,000 gigawatts — and it’s on track to grow as we electrify more and more of the economy. While decarbonizing the grid isn’t as simple as switching one energy source for another, still, it would take more than a century to build 4,000 gigawatts of renewables electricity at our current rate.
It’s a similar story in electric cars. The growth is good: EV sales rose 50% year over year in the first half of 2023. But the challenge is daunting: Electric vehicles made up only 7% of all new car sales in the U.S. during the same period, and decarbonizing the car fleet will eventually require making virtually all new car sales EVs, and then — over the next decade — replacing the 275 million private vehicles on the road.
And that’s the story of the IRA — from renewables to EVs, geothermal to nuclear energy. The trends have never been better. The government has never tried to change the energy system so quickly or so thoroughly. That, by itself, is progress: For decades, the great obstacle of climate change was that the government wasn’t trying to solve it at all.
But decarbonization will require replacing hundreds of millions of machines that exist in the world — and doing it fast enough that we avoid dealing catastrophic damage to the climate system. The IRA is about to take on that challenge head-on. Now we find out if it’s up to the task.
The real work, in other words, is just beginning.
Read more from Robinson Meyer:
The East Coast’s Smoke Could Last Until October
The Weird Reasons Behind the Atlantic Ocean’s Crazy Heat
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
In practice, direct lithium extraction doesn’t quite make sense, but 2026 could its critical year.
Lithium isn’t like most minerals.
Unlike other battery metals such as nickel, cobalt, and manganese, which are mined from hard-rock ores using drills and explosives, the majority of the world’s lithium resources are found in underground reservoirs of extremely salty water, known as brine. And while hard-rock mining does play a major role in lithium extraction — the majority of the world’s actual production still comes from rocks — brine mining is usually significantly cheaper, and is thus highly attractive wherever it’s geographically feasible.
Reaching that brine and extracting that lithium — so integral to grid-scale energy storage and electric vehicles alike — is typically slow, inefficient, and environmentally taxing. This year, however, could represent a critical juncture for a novel process known as Direct Lithium Extraction, or DLE, which promises to be faster, cleaner, and capable of unlocking lithium across a wider range of geographies.
The traditional method of separating lithium from brine is straightforward but time-consuming. Essentially, the liquid is pumped through a series of vast, vividly colored solar evaporation ponds that gradually concentrate the mineral over the course of more than a year.
It works, but by the time the lithium is extracted, refined, and ready for market, both the demand and the price may have shifted significantly, as evidenced by the dramatic rise and collapse of lithium prices over the past five years. And while evaporation ponds are well-suited to the arid deserts of Chile and Argentina where they’re most common, the geology, brine chemistry, and climate of the U.S. regions with the best reserves are generally not amenable to this approach. Not to mention the ponds require a humongous land footprint, raising questions about land use and ecological degradation.
DLE forgoes these expansive pools, instead pulling lithium-rich brine into a processing unit, where some combination of chemicals, sorbents, or membranes isolate and extricate the lithium before the remaining brine gets injected back underground. This process can produce battery-grade lithium in a matter of hours or days, without the need to transport concentrated brine to separate processing facilities.
This tech has been studied for decades, but aside from a few Chinese producers using it in combination with evaporation ponds, it’s largely remained stuck in the research and development stage. Now, several DLE companies are looking to build their first commercial plants in 2026, aiming to prove that their methods can work at scale, no evaporation ponds needed.
“I do think this is the year where DLE starts getting more and more relevant,” Federico Gay, a principal lithium analyst at Benchmark Mineral Intelligence, told me.
Standard Lithium, in partnership with oil and gas major Equinor, aims to break ground this year on its first commercial facility in Arkansas’s lithium-rich Smackover Formation, while the startup Lilac Solution also plans to commence construction on a commercial plant at Utah’s Great Salt Lake. Mining giant Rio Tinto is progressing with plans to build a commercial DLE facility in Argentina, which is already home to one commercial DLE plant — the first outside of China. That facility is run by the French mining company Eramet, which plans to ramp production to full capacity this year.
If “prices are positive” for lithium, Gay said, he expects that the industry will also start to see mergers and acquisitions this year among technology providers and larger corporations such as mining giants or oil and gas majors, as “some of the big players will try locking in or buying technology to potentially produce from the resources they own.” Indeed, ExxonMobil and Occidental Petroleum are already developing DLE projects, while major automakers have invested, too.
But that looming question of lithium prices — and what it means for DLE’s viability — is no small thing. When EV and battery storage demand boomed at the start of the decade, lithium prices climbed roughly 10-fold through 2022 before plunging as producers aggressively ramped output, flooding the market just as EV demand cooled. And while prices have lately started to tick upward again, there’s no telling whether the trend will continue.
“Everyone seems to have settled on a consensus view that $20,000 a tonne is where the market’s really going to be unleashed,” Joe Arencibia, president of the DLE startup Summit Nanotech, told me, referring to the lithium extraction market in all of its forms — hard rock mining, traditional brine, and DLE. “As far as we’re concerned, a market with $14,000, $15,000 a tonne is fine and dandy for us.”
Lilac Solutions, the most prominent startup in the DLE space, expects that its initial Utah project — which will produce a relatively humble 5,000 metric tons of lithium per year — will be profitable even if lithium prices hit last year’s low of $8,300 per metric ton. That’s according to the company’s CEO Raef Sully, who also told me that because Utah’s reserves are much lower grade than South America’s, Lilac could produce lithium for a mere $3,000 to $3,500 in Chile if it scaled production to 15,000 or 20,000 metric tons per year.
What sets Lilac apart from other DLE projects is its approach to separating lithium from brine. Most companies are pursuing adsorption-based processes, in which lithium ions bind to an aluminum-based sorbent, which removes them from surrounding impurities. But stripping the lithium from the sorbent generally requires a good deal of freshwater, which is not ideal given that many lithium-rich regions are parched deserts.
Lilac’s tech relies on an ion-exchange process in which small ceramic beads selectively capture lithium ions from the brine in their crystalline structure, swapping them for hydrogen ions. “The crystal structure seems to have a really strong attraction to lithium and nothing else,” Sully told me. Acid then releases the concentrated lithium. When compared with adsorption-based tech, he explained, this method demands far fewer materials and is “much more selective for lithium ions versus other ions,” making the result purer and thus cheaper to process into a battery-grade material.
Because adsorption-based DLE is already operating commercially and ion-exchange isn’t, Lilac has much to prove with its first commercial facility, which is expected to finalize funding and begin construction by the middle of this year.
Sully estimates that Lilac will need to raise around $250 million to build its first commercial facility, which has already been delayed due to the price slump. The company’s former CEO and current CTO Dave Snydacker told me in 2023 that he expected to commence commercial operations by the end of 2024, whereas now the company plans to bring its Utah plant online at the end of 2027 or early 2028.
“Two years ago, with where the market was, nobody was going to look at that investment,” Sully explained, referring to its commercial plant. Investors, he said, were waiting to see what remained after the market bottomed out, which it now seems to have done. Lilac is still standing, and while there haven’t yet been any public announcements regarding project funding, Sully told me he’s confident that the money will come together in time to break ground in mid-2026.
It also doesn’t hurt that lithium prices have been on the rise for a few months, currently hovering around $20,000 per tonne. Gay thinks prices are likely to stabilize somewhere in this range, as stakeholders who have weathered the volatility now have a better understanding of the market.
At that price, hard rock mining would be a feasible option, though still more expensive than traditional evaporation ponds and far above what DLE producers are forecasting. And while some mines operated at a loss or mothballed their operations during the past few years, Gay thinks that even if prices stabilize, hard-rock mines will continue to be the dominant source of lithium for the foreseeable future due to sustained global investment across Africa, Brazil, Australia, and parts of Asia. The price may be steeper, but the infrastructure is also well-established and the economics are well-understood.
“I’m optimistic and bullish about DLE, but probably it won’t have the impact that it was thought about two or three years ago,” Gay told me, as the hype has died down and prices have cooled from their record high of around $80,000 per tonne. By 2040, Benchmark forecasts that DLE will make up 15% to 20% of the lithium market, with evaporation ponds continuing to be a larger contributor for the next decade or so, primarily due to the high upfront costs of DLE projects and the time required for them to reach economies of scale.
On average, Benchmark predicts that this tech will wind up in “the high end of the second quartile” of the cost curve, making DLE projects a lower mid-cost option. “So it’s good — not great, good. But we’ll have some DLE projects in the first quartile as well, so competing with very good evaporation assets,” Gay told me.
Unsurprisingly, the technology companies themselves are more bullish on their approach. Even though Arencibia predicts that evaporation ponds will continue to be about 25% cheaper, he thinks that “the majority of future brine projects will be DLE,” and that DLE will represent 25% or more of the future lithium market.
That forecast comes in large part because Chile — the world’s largest producer of lithium from brine — has stated in its National Lithium Strategy that all new projects should have an “obligatory requirement” to use novel, less ecologically disruptive production methods. Other nations with significant but yet-to-be exploited lithium brine resources, such as Bolivia, could follow suit.
Sully is even more optimistic, predicting that as lithium demand grows from about 1.5 million metric tons per year to around 3.5 million metric tons by 2035, the majority of that growth will come from DLE. “I honestly believe that there will be no more hard rock mines built in Australia or the U.S.,” he said, telling me that in ten years time, half of our lithium supply could “easily” come from DLE.
As a number of major projects break ground this year and the big players start consolidating, we’ll begin to get a sense of whose projections are most realistic. But it won’t be until some of these projects ramp up commercial production in the 2028 to 2030 timeframe that DLE’s market potential will really crystalize.
“If you’re not a very large player at the moment, I think it’s very difficult for you to proceed,” Sully told me, reflecting on how lithium’s price shocks have rocked the industry. Even with lithium prices ticking precariously upwards now, the industry is preparing for at least some level of continued volatility and uncertainty.
“Long term, who knows what [prices are] going to be,” Sully said. “I’ve given up trying to predict.”
A chat with CleanCapital founder Jon Powers.
This week’s conversation is with Jon Powers, founder of the investment firm CleanCapital. I reached out to Powers because I wanted to get a better understanding of how renewable energy investments were shifting one year into the Trump administration. What followed was a candid, detailed look inside the thinking of how the big money in cleantech actually views Trump’s war on renewable energy permitting.
The following conversation was lightly edited for clarity.
Alright, so let’s start off with a big question: How do investors in clean energy view Trump’s permitting freeze?
So, let’s take a step back. Look at the trend over the last decade. The industry’s boomed, manufacturing jobs are happening, the labor force has grown, investments are coming.
We [Clean Capital] are backed by infrastructure life insurance money. It’s money that wasn’t in this market 10 years ago. It’s there because these are long-term infrastructure assets. They see the opportunity. What are they looking for? Certainty. If somebody takes your life insurance money, and they invest it, they want to know it’s going to be there in 20 years in case they need to pay it out. These are really great assets – they’re paying for electricity, the panels hold up, etcetera.
With investors, the more you can manage that risk, the more capital there is out there and the better cost of capital there is for the project. If I was taking high cost private equity money to fund a project, you have to pay for the equipment and the cost of the financing. The more you can bring down the cost of financing – which has happened over the last decade – the cheaper the power can be on the back-end. You can use cheaper money to build.
Once you get that type of capital, you need certainty. That certainty had developed. The election of President Trump threw that into a little bit of disarray. We’re seeing that being implemented today, and they’re doing everything they can to throw wrenches into the growth of what we’ve been doing. They passed the bill affecting the tax credits, and the work they’re doing on permitting to slow roll projects, all of that uncertainty is damaging the projects and more importantly costs everyone down the road by raising the cost of electricity, in turn making projects more expensive in the first place. It’s not a nice recipe for people buying electricity.
But in September, I went to the RE+ conference in California – I thought that was going to be a funeral march but it wasn’t. People were saying, Now we have to shift and adjust. This is a huge industry. How do we get those adjustments and move forward?
Investors looked at it the same way. Yes, how will things like permitting affect the timeline of getting to build? But the fundamentals of supply and demand haven’t changed and in fact are working more in favor of us than before, so we’re figuring out where to invest on that potential. Also, yes federal is key, but state permitting is crucial. When you’re talking about distributed generation going out of a facility next to a data center, or a Wal-Mart, or an Amazon warehouse, that demand very much still exists and projects are being built in that middle market today.
What you’re seeing is a recalibration of risk among investors to understand where we put our money today. And we’re seeing some international money pulling back, and it all comes back to that concept of certainty.
To what extent does the international money moving out of the U.S. have to do with what Trump has done to offshore wind? Is that trade policy? Help us understand why that is happening.
I think it’s not trade policy, per se. Maybe that’s happening on the technology side. But what I’m talking about is money going into infrastructure and assets – for a couple of years, we were one of the hottest places to invest.
Think about a European pension fund who is taking money from a country in Europe and wanting to invest it somewhere they’ll get their money back. That type of capital has definitely been re-evaluating where they’ll put their money, and parallel, some of the larger utility players are starting to re-evaluate or even back out of projects because they’re concerned about questions around large-scale utility solar development, specifically.
Taking a step back to something else you said about federal permitting not being as crucial as state permitting–
That’s about the size of the project. Huge utility projects may still need federal approvals for transmission.
Okay. But when it comes to the trendline on community relations and social conflict, are we seeing renewable energy permitting risk increase in the U.S.? Decrease? Stay the same?
That has less to do with the administration but more of a well-structured fossil fuel campaign. Anti-climate, very dark money. I am not an expert on where the money comes from, but folks have tried to map that out. Now you’re even seeing local communities pass stuff like no energy storage [ordinances].
What’s interesting is that in those communities, we as an industry are not really present providing facts to counter this. That’s very frustrating for folks. We’re seeing these pass and honestly asking, Who was there?
Is the federal permitting freeze impacting investment too?
Definitely.
It’s not like you put money into a project all at once, right? It happens in these chunks. Let’s say there’s 10 steps for investing in a project. A little bit of money at step one, more money at step two, and it gradually gets more until you build the project. The middle area – permitting, getting approval from utilities – is really critical to the investments. So you’re seeing a little bit of a pause in when and how we make investments, because we sometimes don’t know if we’ll make it to, say, step six.
I actually think we’ll see the most impact from this in data center costs.
Can you explain that a bit more for me?
Look at northern Virginia for a second. There wasn’t a lot of new electricity added to that market but you all of the sudden upped demand for electricity by 20 percent. We’re literally seeing today all these utilities putting in rate hikes for consumers because it is literally a supply-demand question. If you can’t build new supply, it's going to be consumers paying for it, and even if you could build a new natural gas plant – at minimum that will happen four-to-six years from now. So over the next four years, we’ll see costs go up.
We’re building projects today that we invested in two years ago. That policy landscape we invested in two years ago hasn’t changed from what we invested into. But the policy landscape then changed dramatically.
If you wipe out half of what was coming in, there’s nothing backfilling that.
Plus more on the week’s biggest renewables fights.
Shelby County, Indiana – A large data center was rejected late Wednesday southeast of Indianapolis, as the takedown of a major Google campus last year continues to reverberate in the area.
Dane County, Wisconsin – Heading northwest, the QTS data center in DeForest we’ve been tracking is broiling into a major conflict, after activists uncovered controversial emails between the village’s president and the company.
White Pine County, Nevada – The Trump administration is finally moving a little bit of renewable energy infrastructure through the permitting process. Or at least, that’s what it looks like.
Mineral County, Nevada – Meanwhile, the BLM actually did approve a solar project on federal lands while we were gone: the Libra energy facility in southwest Nevada.
Hancock County, Ohio – Ohio’s legal system appears friendly for solar development right now, as another utility-scale project’s permits were upheld by the state Supreme Court.