You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The most interesting things I haven’t written about yet.

My inbox and calendar have been filled all year with press releases and requests to chat about new carbon removal technologies, artificial intelligence and its attendant energy demand, novel battery designs, advances in fission and fusion, and investors’ ever-present concerns about how to get all of this to market in time to make a real dent in the climate crisis (and also, you know, a profit).
I wrote about a lot of it — but not all of it, and much of the stuff that got left out is no less worthy of your attention than the stuff that made it. So here I present a roundup of the climate technologies that you might not have read about in Heatmap this year, but that have investors, academics, and the climate world at large buzzing as we look toward 2025.
This fall when I spoke with Amy Duffuor, a co-founder and partner at the venture capital firm Azolla Ventures, she told me that her firm, which is focused on “overlooked and neglected” climate solutions, has been fascinated by the shipping industry. Because while aviation and shipping each account for about 3% of global emissions, decarbonizing flight seems to get the bulk of the attention. “Sometimes it’s hard for people to imagine what they don’t see or what they’re not interacting with on a day to day basis,” Duffuor told me.
This fall, the firm co-led a $4.5 million seed round of investment in clean fuels producer Oxylus Energy, which converts carbon dioxide into green methanol for use in shipping and other transportation fuels. The tech relies on renewable-powered electrolyzers similar to those used to make green hydrogen, but the company’s secret sauce is a special catalyst that can convert carbon dioxide into methanol at low temperature and pressure, making the whole process more efficient and more economical than ever before.
Duffuor told me that green methanol has a leg up on other clean fuels such as green hydrogen, which has a low energy density, or green ammonia, which is highly toxic and corrosive. While supply of all of these is still limited and costly, Duffuor said that retrofitting an engine to run on green methanol is much simpler than adapting to other alternative fuels, which is why it’s already being done on a small scale today. Indeed, shipping giant Maersk has a number of green methanol boats in its fleet, one of which completed the world’s first green methanol-powered voyage last fall.
Long considered “one of climate science’s biggest taboos,” according to Heatmap’s own Robinson Meyer, geoengineering had a big 2024, and it looks poised to be taken increasingly seriously. In fact, one investor I spoke with this month, Lee Larson of Piva Capital, which focuses on decarbonizing heavy industry, told me he foresees a splashy but undeniably controversial funding announcement coming in the near future. “I don’t think it’s going to be Piva, but someone is going to take a bet on this, and there’s going to be a big funding round for a startup in this space,” he predicted. “Because there’s enough interested people with deep pockets that have been thinking about this space for someone to raise money off of it.”
But if nothing else, this year proved that the backlash would be swift. In June, the city council in the small town of Alameda, California, shut down testing of a solar geoengineering device that could one day be used for “marine cloud brightening” — that is, spraying aerosols into the sky to enable clouds to reflect more sunlight away from Earth — and Harvard University abandoned another solar geoengineering project, which aimed to study how aerosol plumes behave in the stratosphere. At the same time, though, the nonprofit Environmental Defense Fund announced that it would fund research into solar geoengineering to help inform policymakers should it one day become regulated, and the UK also committed to supporting research into various solar geoengineering pathways, including conducting outdoor experiments.
“There’s a growing understanding that, on a per unit of warming avoidance basis, this is just way cheaper than carbon dioxide removal solutions,” Larson told me. From his perspective, the world needs to support this type of research lest a layperson, a billionaire, or a small nation choose to go rogue. “Just given how cheap it is, given how little we know about it, that’s a poor combination — because the chance of someone doing something with a lot of unintended consequences goes up and up.”
The idea is pretty straightforward — install solar panels that can float on the surface of reservoirs, canals, lakes, and the like — but this year it really began to pick up steam. There are myriad benefits to this solution: eliminating land use controversies, built-in temperature regulation (water keeps the panels cool, thus increasing their efficiency), and reducing evaporation from the water bodies. A paper published in Nature this June found that floating solar could meet, on average, 16% of countries’ total energy needs.
And countries big and small are taking note. While there aren’t a lot of specialized floating solar startups seeking VC funding, governments as well as traditional solar manufacturers and project developers are stepping up. The U.S. Department of the Interior announced in April that it’s investing $19 million to install panels over irrigation canals in California, Oregon, and Utah. Zimbabwe recently secured $250 million from the African Export-Import Bank to install floating solar on the world’s largest man-made lake, while China turned on the largest offshore solar farm in the world in November. Taiwan and India have also already deployed large installations, and have plans for more.
I spoke with the lead author of the Nature paper, Dr. Iestyn Woolway of the UK-based Bangor University, way back in June about floating solar’s decarbonization potential. Even he was “quite surprised with the number of countries that could meet a sizable fraction of the energy demands by [floating photovoltaics],” he told me. His modeling shows that Bolivia, for example, could meet about 80% of its energy demand with floating solar, while Ethiopia could meet 100% of its demand, with extra energy to spare.
The next step, he said, is gaining a deeper understanding of the ecological impacts of this technology. “Even if you do cover a water body by something small, like 10%, we don’t know what knock-on effect that would have,” he said.
Soils are some of the world’s most effective carbon sinks, and sustainable farming techniques can enhance soil’s natural carbon sequestration potential. Thus, soil carbon sequestration plays at the intersection of the fuzzy and buzzy regenerative agriculture space and the increasingly scientifically rigorous carbon dioxide removal sector, with its carbon crediting schemes and verification requirements. One investor I spoke with, Amy Francetic of Buoyant Ventures, is eager to find and back a company that can merge these two worlds. “If you could figure out how to sink carbon in a farm and do that in a way that is easy to measure and validate, we don’t have a good solution for that today,” she told me.
As of now, Francetic said, startups are going about this problem by doing labor intensive and expensive soil sampling and “marrying that with geospatial data to try to measure what climate benefits there are of changing certain agricultural practices, doing different row crops, changing the crop rotation, the amount of inputs you put into the crops.” Many have pitched Buoyant on their methodologies for bridging satellite data with soil sampling data, but thus far she’s passed. “None of them have, I think, met the standard of reliability that the financial industry would back from a carbon credit standpoint,” she explained. “That might be one of these holy grail things. If somebody could really do that, it could be very impactful.”
I’ll be honest, before this year I didn’t know what parametric insurance was. But since it came up time and again in conversations with investors about extreme weather and the necessity of climate resilience and adaptation measures, I decided to dig in. Here’s what parametric insurance is: an insurance product that automatically provides rapid payouts to customers in the case of natural disasters or weather events, assuming these events exceed a predefined limit. For example, a policyholder might be paid if the rainfall, wind speed, or temperature of a particular weather event is above or below a certain threshold, with the amount tied to how much the measurement deviates from the limit, not the damages incurred.
With extreme weather events getting more frequent and more intense due to climate change, this has given rise to a crop of startups that can leverage sensors, satellites, and artificial intelligence to quickly and accurately measure the extent of these events, thus enabling parametric insurance for a host of new customers. To name a few companies that have taken advantage: There’s Floodbase and FloodFlash (both focusing on flood insurance, naturally), which have each raised over $10 million in Series A financing; FloodFlash made a series of rapid payouts this year following storms in the UK, getting policyholders their money in as little as 10 hours after the water level exceeded its threshold. There’s Arbol, which protects against a host of weather events from drought to heat waves and cold snaps, and raised a $40 million Series B round this year. And there’s Pula, which helps provide parametric insurance to small-holder farmers in emerging markets, and raised a $20 million Series B round this year.
“This is affecting everybody,” Clea Kolster of Lowercarbon Capital, which led Floodbase’s Series A round, told me when we met at this year’s San Francisco Climate Week. “So how do you actually make sure that people have coverage for it and can continue to have as close to livable lives as possible, even when they’re subject to more frequent extreme weather events?” Investors know the storms are going to keep coming, so this category of adaptation tech is only set to grow.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A chat with CleanCapital founder Jon Powers.
This week’s conversation is with Jon Powers, founder of the investment firm CleanCapital. I reached out to Powers because I wanted to get a better understanding of how renewable energy investments were shifting one year into the Trump administration. What followed was a candid, detailed look inside the thinking of how the big money in cleantech actually views Trump’s war on renewable energy permitting.
The following conversation was lightly edited for clarity.
Alright, so let’s start off with a big question: How do investors in clean energy view Trump’s permitting freeze?
So, let’s take a step back. Look at the trend over the last decade. The industry’s boomed, manufacturing jobs are happening, the labor force has grown, investments are coming.
We [Clean Capital] are backed by infrastructure life insurance money. It’s money that wasn’t in this market 10 years ago. It’s there because these are long-term infrastructure assets. They see the opportunity. What are they looking for? Certainty. If somebody takes your life insurance money, and they invest it, they want to know it’s going to be there in 20 years in case they need to pay it out. These are really great assets – they’re paying for electricity, the panels hold up, etcetera.
With investors, the more you can manage that risk, the more capital there is out there and the better cost of capital there is for the project. If I was taking high cost private equity money to fund a project, you have to pay for the equipment and the cost of the financing. The more you can bring down the cost of financing – which has happened over the last decade – the cheaper the power can be on the back-end. You can use cheaper money to build.
Once you get that type of capital, you need certainty. That certainty had developed. The election of President Trump threw that into a little bit of disarray. We’re seeing that being implemented today, and they’re doing everything they can to throw wrenches into the growth of what we’ve been doing. They passed the bill affecting the tax credits, and the work they’re doing on permitting to slow roll projects, all of that uncertainty is damaging the projects and more importantly costs everyone down the road by raising the cost of electricity, in turn making projects more expensive in the first place. It’s not a nice recipe for people buying electricity.
But in September, I went to the RE+ conference in California – I thought that was going to be a funeral march but it wasn’t. People were saying, Now we have to shift and adjust. This is a huge industry. How do we get those adjustments and move forward?
Investors looked at it the same way. Yes, how will things like permitting affect the timeline of getting to build? But the fundamentals of supply and demand haven’t changed and in fact are working more in favor of us than before, so we’re figuring out where to invest on that potential. Also, yes federal is key, but state permitting is crucial. When you’re talking about distributed generation going out of a facility next to a data center, or a Wal-Mart, or an Amazon warehouse, that demand very much still exists and projects are being built in that middle market today.
What you’re seeing is a recalibration of risk among investors to understand where we put our money today. And we’re seeing some international money pulling back, and it all comes back to that concept of certainty.
To what extent does the international money moving out of the U.S. have to do with what Trump has done to offshore wind? Is that trade policy? Help us understand why that is happening.
I think it’s not trade policy, per se. Maybe that’s happening on the technology side. But what I’m talking about is money going into infrastructure and assets – for a couple of years, we were one of the hottest places to invest.
Think about a European pension fund who is taking money from a country in Europe and wanting to invest it somewhere they’ll get their money back. That type of capital has definitely been re-evaluating where they’ll put their money, and parallel, some of the larger utility players are starting to re-evaluate or even back out of projects because they’re concerned about questions around large-scale utility solar development, specifically.
Taking a step back to something else you said about federal permitting not being as crucial as state permitting–
That’s about the size of the project. Huge utility projects may still need federal approvals for transmission.
Okay. But when it comes to the trendline on community relations and social conflict, are we seeing renewable energy permitting risk increase in the U.S.? Decrease? Stay the same?
That has less to do with the administration but more of a well-structured fossil fuel campaign. Anti-climate, very dark money. I am not an expert on where the money comes from, but folks have tried to map that out. Now you’re even seeing local communities pass stuff like no energy storage [ordinances].
What’s interesting is that in those communities, we as an industry are not really present providing facts to counter this. That’s very frustrating for folks. We’re seeing these pass and honestly asking, Who was there?
Is the federal permitting freeze impacting investment too?
Definitely.
It’s not like you put money into a project all at once, right? It happens in these chunks. Let’s say there’s 10 steps for investing in a project. A little bit of money at step one, more money at step two, and it gradually gets more until you build the project. The middle area – permitting, getting approval from utilities – is really critical to the investments. So you’re seeing a little bit of a pause in when and how we make investments, because we sometimes don’t know if we’ll make it to, say, step six.
I actually think we’ll see the most impact from this in data center costs.
Can you explain that a bit more for me?
Look at northern Virginia for a second. There wasn’t a lot of new electricity added to that market but you all of the sudden upped demand for electricity by 20 percent. We’re literally seeing today all these utilities putting in rate hikes for consumers because it is literally a supply-demand question. If you can’t build new supply, it's going to be consumers paying for it, and even if you could build a new natural gas plant – at minimum that will happen four-to-six years from now. So over the next four years, we’ll see costs go up.
We’re building projects today that we invested in two years ago. That policy landscape we invested in two years ago hasn’t changed from what we invested into. But the policy landscape then changed dramatically.
If you wipe out half of what was coming in, there’s nothing backfilling that.
Plus more on the week’s biggest renewables fights.
Shelby County, Indiana – A large data center was rejected late Wednesday southeast of Indianapolis, as the takedown of a major Google campus last year continues to reverberate in the area.
Dane County, Wisconsin – Heading northwest, the QTS data center in DeForest we’ve been tracking is broiling into a major conflict, after activists uncovered controversial emails between the village’s president and the company.
White Pine County, Nevada – The Trump administration is finally moving a little bit of renewable energy infrastructure through the permitting process. Or at least, that’s what it looks like.
Mineral County, Nevada – Meanwhile, the BLM actually did approve a solar project on federal lands while we were gone: the Libra energy facility in southwest Nevada.
Hancock County, Ohio – Ohio’s legal system appears friendly for solar development right now, as another utility-scale project’s permits were upheld by the state Supreme Court.
The offshore wind industry is using the law to fight back against the Trump administration.
It’s time for a big renewable energy legal update because Trump’s war on renewable energy projects will soon be decided in the courts.
A flurry of lawsuits were filed around the holidays after the Interior Department issued stop work orders against every offshore wind project under construction, citing a classified military analysis. By my count, at least three developers filed individual suits against these actions: Dominion Energy over the Coastal Virginia offshore wind project, Equinor over Empire Wind in New York, and Orsted over Revolution Wind (for the second time).
Each of these cases are moving on separate tracks before different district courts and the urgency is plain. I expect rulings in a matter of days, as developers have said in legal filings that further delays could jeopardize the completion of these projects due to vessel availability and narrow timelines for meeting power contracts with their respective state customers. In the most dire case, Equinor stated in its initial filing against the government that if the stop work order is implemented as written, it would “likely” result in the project being canceled. Revolution Wind faces similar risks, as I’ve previously detailed for Heatmap.
Meanwhile, around the same time these cases were filed, a separate lawsuit was dropped on the Interior Department from a group of regional renewable energy power associations, including Interwest Energy Alliance, which represents solar developers operating in the American Southwest – ground zero for Trump’s freeze on solar permits.
This lawsuit challenges Interior Secretary Doug Burgum’s secretarial orders requiring his approval for renewable energy decisions, the Army Corps of Engineers’ quiet pause on wetlands approvals, and the Fish and Wildlife Services’ ban on permitting eagle takes, as well as its refusal to let developers know if they require species consultations under the Endangered Species Act. The case argues that the administration is implementing federal land law “contrary to Congress’ intent” by “unlawfully picking winners and losers among energy sources,” and that these moves violate the Administrative Procedures Act.
I expect crucial action in this case imminently, too. On Thursday, these associations filed a motion declaring their intent to seek a preliminary injunction against the administration while the case is adjudicated because, as the filing states, the actions against the renewables sector are “currently costing the wind and solar industry billions of dollars.”
Now, a victory here wouldn’t be complete, since a favorable ruling would likely be appealed and the Trump administration has been reluctant to act on rulings they disagree with. Nevertheless, it would still be a big win for renewables companies frozen by federal bureaucracy and ammo in any future legal or regulatory action around permit activity.
So far, Trump’s war on solar and wind has not really been tested by the courts, sans one positive ruling against his anti-wind Day One executive order. It’s easy in a vacuum to see these challenges and think, Wow, the industry is really fighting back! Maybe they can prevail? However I want to remind my readers that simply having the power of the federal government grants one the capacity to delay commercial construction activity under federal purview, no matter the legality. These matters can become whack-a-mole quite quickly.
Dominion Energy’s Coastal Virginia offshore wind project is one such example. Intrepid readers of The Fight may remember I was first to report the Trump administration might try to mess around with the permits previously issued for construction through litigation brought by anti-renewables activists, arguing the government did not adequately analyse potential impacts to endangered whales. Well, it appears we’re getting closer to an answer: In a Dec. 18 filing submitted in that lawsuit, Justice Department attorneys said they have been “advised” that the Interior Department is now considering whether to revoke permits for the project.
Dominion did not respond to a request for comment about this filing, but it is worth noting that the DOJ’s filing concedes Dominion is aware of this threat and “does not concede the propriety” of any review or revocation of the permits.
I don’t believe this alone would kill Coastal Virginia given the project is so far along in construction. But I expect a death by a thousand cuts strategy from the Trump team against renewable energy projects writ large, regardless of who wins these cases.