You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
In some cases, rising electricity rates are the least of a company’s worries.

Skyrocketing electricity prices are hitting Americans hard, which makes one wonder: Are electrification-based technologies doomed? No doubt sectors like green hydrogen, clean fuels, low-carbon steel and cement, and direct air capture would benefit from a hypothetical world of cheap, abundant electricity. But what happens if that world doesn’t materialize anytime soon?
The answer, as it so often turns out, is significantly more complicated than a simple yes or no. After talking with a bunch of experts, including decarbonization researchers, analysts, and investors, what I’ve learned is that the extent to which high electricity prices will darken the prospects for any given technology depends on any number of factors, including the specific industry, region, and technical approach a company’s taking. Add on the fact that many industries looking to electrify were hit hard by the One Big Beautiful Bill Act, which yanked forward deadlines for clean hydrogen and other renewable energy projects to qualify for subsidies, and there are plenty of pressing challenges for electrification startups when it comes to unit economics.
“Having lower energy prices is good for everybody,” Bryan Fisher, a managing director at the energy think tank RMI focused on industrial decarbonization, told me simply. And so when those prices go up, “the biggest macro theme is it hurts industries or applications of industry unevenly — green hydrogen being the biggest one.”
There was a general consensus among the people I spoke with that electrolytic hydrogen — known as green hydrogen if it’s produced with renewable electricity — is the clearest casualty here. That’s unsurprising given that electricity drives roughly 60% to 70% of its production cost, as it powers the process that splits water into hydrogen and oxygen. Rising hydrogen costs will also have knock-on effects across other emergent industries, as many companies and investors are banking on green hydrogen to replace fossil fuels in hard-to-electrify sectors such as chemical production or long-haul transport.
Fisher told me that rising electricity costs now means that the transition from blue hydrogen — produced from natural gas feedstock, with carbon capture and storage to control emissions — to green hydrogen will be prolonged. “What we always thought was going to happen was that a blue hydrogen market would develop and be replaced by green as those costs went down,” Fisher explained. “So I think the time at which the market will utilize low-emissions blue hydrogen is just extended.”
Dan Lashof, the former U.S. director and a current senior fellow at the World Resources Institute, told me that if and when hydrogen projects scale, circumventing the rising costs of grid electricity with behind-the-meter renewable power could be a viable option, given that new wind and solar generation remains quite cheap. He also emphasized the other factors at play when it comes to making green hydrogen economically feasible — mainly the high cost of electrolyzers themselves, the devices that split water into its component parts. “Tariffs on Chinese imports are going to be a big factor in terms of electrolyzer costs,” he told me. That leads him to ask, “will other countries like India step up and be able to produce low cost electrolyzers for the U.S. market?”
Among industries that rely on green hydrogen, sustainable aviation and green shipping might suffer the most, as hydrogen is a necessary ingredient in certain net-zero fuels. But high electricity prices — and by extension green hydrogen costs — are far from their only financial concern. Producing clean fuels often requires combining hydrogen with captured carbon to synthesize hydrocarbons.Sourcing and capturing CO2, breaking it down into carbon monoxide, and synthesizing hydrocarbons are all expensive in and of themselves.
Fisher told me that when it comes to the category of sustainable aviation fuels known as e-SAF, which is made from green hydrogen and captured carbon dioxide, innovations in these other areas — as well as economies of scale — are more likely to make a meaningful dent in fuel prices than cheaper electricity. “Power prices going up 20% adds about $1 or $1.50 a gallon to e-SAF,” he explained. “And right now we’re probably $5 to $7 out of the money.” So while lower electricity prices would certainly be welcome, the industry needs cost breakthroughs on multiple fronts before this fuel has a shot at competing.
Some companies, including Twelve, require electrolyzers to break down both CO2 and H2O. Rajesh Swaminathan, a partner at Khosla Ventures, told me he simply doesn’t think the current approaches to e-SAF will get there economically. “It’s a terrible economic idea. It doesn’t pass any kind of sniff test,” he said. “Even if electricity prices were extremely low, this will not be competitive from a capex and opex perspective,” he said, referring to both capital expenditures and the cost of operating the business.
Khosla has instead invested in Lanzatech, which sources carbon-rich gases from industrial facilities such as steel mills and ferments them into ethanol, which can then be chemically converted into jet fuel. Its core process doesn’t rely on green hydrogen or electrolysis at all. “That’s such a low-cost approach that will meet the SAF targets of $4 per gallon,” Swaminathan told me — a claim that remains to be seen, of course.
Efforts to decarbonize high heat industrial processes such as steel and cement production also rely heavily on electrification. The clean cement company Sublime Systems and clean steel companies Boston Metal and Electra, for instance, all use electricity-driven chemical processes to replace the need for burning fossil fuels in either cement kilns or the blast furnaces used in steel production.
The companies themselves often emphasize the importance of low electricity prices for making this tech cost-competitive. For example, when Boston Metal’s CEO Tadeu Carneiro was asked by a Time magazine reporter two years ago about where the company would source the enormous amount of electricity needed to melt iron ore as planned, he replied, “If you don’t believe that electricity will be plentiful, reliable, available, green, and cheap, forget about it,” essentially acknowledging the tech won’t pencil out in the absence of cheap power. He added that there are regions such as Quebec and Scandinavia — both of which have abundant hydropower resources — where it would make economic sense to deploy Boston Metal’s tech sooner rather than later. Similarly, Sublime is building its first commercial-scale clean cement plant in Holyoke, Massachusetts, where it’s sourcing power from the city’s hydroelectric dam.
“We have to believe that the electricity will be available,” Carneiro told Time.
Lashof told me that in the meantime, higher electricity prices will “push industrial decarbonization more towards using carbon capture and sequestration pathways” over electrification-driven approaches. But Fisher thinks that in many cases there’s still “headroom” for electrification of power and heat to make sense domestically, even with a relatively significant “20% to 30% type increase” in electricity costs.
“If you’re doing a heat by electrification project at your industrial site, in some cases it’s an adaptive problem, not an economic problem.” he told me. Indeed, plants will need to be redesigned — no small cost in itself — and teams must be willing to change their systems and processes to accommodate new technologies. That organizational inertia could, in some cases, prevent the adoption of novel electrification tech, even if electricity prices would support it.
One technology that Fisher is absolutely certain isn’t constrained by electricity prices so much as the lack of a fundamental technical breakthrough is engineered carbon removal, such as direct air capture. “Innovation is the key, not low power prices, because we need to get from $500 bucks a ton in carbon removal to $50 bucks a ton,” he told me. While DAC certainly requires loads of electricity to pull CO2 out of the air and chemically separate it, that won’t be enough to conjure the 90% price reduction necessary before DAC can reach scale.
But rest assured, rising electricity prices will also create some winners, with energy efficiency likely to be at the top of the list, Duncan Turner, a general partner at venture capital firm SOSV, told me. Personally, he’s excited about everything from innovations in HVAC systems to companies developing more energy-efficient chemical separation processes, low-power light-based data transfer hardware for data centers, and plasma-based cooling products for computing chips.
Energy efficiency isn’t the only category he thinks stands to benefit. “There’s a bunch of long-duration energy storage companies that will look very interesting indeed as the price of electricity starts to go up and the demand for electricity from data centers starts to peak,” Turner told me. Like Fisher, he also sees an opportunity for point-source carbon capture, viewing it as a way to “very quickly get cheaper and cleaner electricity onto the grid.”
Moments like these are also when investors are quick to remind us that betting on consistency across seemingly any dimension — whether that’s clean energy incentives, the funding environment, or commodity prices — is often a losing strategy. Or, as Turner put it, “It’s probably for the good for the whole industry — our community as a whole — that we reset to, We work better than anything else, even when there’s expensive electricity.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Agriculture startups are suddenly some of the hottest bets in climate tech, according to the results of our Insiders Survey.
Innovations in agriculture can seem like the neglected stepchild of the climate tech world. While food and agriculture account for about a quarter of global emissions, there’s not a lot of investment in the space — or splashy breakthroughs to make the industry seem that investible in the first place. In transportation and energy, “there is a Tesla, there is an EnPhase,” Cooper Rinzler, a partner at Breakthrough Energy Ventures, told me. “Whereas in ag tech, tell me when the last IPO that was exciting was?”
That may be changing, however. Multiple participants in Heatmap’s Insiders Survey cited ag tech companies Pivot Bio and Nitricity — both of which are pursuing alternate approaches to conventional ammonia-based fertilizers — as among the most exciting climate tech companies working today.
Studies estimate that fertilizer production and use alone account for roughly 5% of global emissions. That includes emissions from the energy-intensive Haber–Bosch process, which synthesizes ammonia by combining nitrogen from the air with hydrogen at extremely high temperatures, as well as nitrous oxide released from the soil after fertilizer is applied. N2O is about 265 times more potent than carbon dioxide over a 100-year timeframe and accounts for roughly 70% of fertilizer-related emissions, as soil microbes convert excess nitrogen that crops can’t immediately absorb into nitrous oxide.
“If we don’t solve nitrous oxide, it on its own is enough of a radiative force that we can’t meet all of our goals,” Rinzler said, referring to global climate targets at large.
Enter what some consider one of the most promising agricultural innovations, perhaps since the invention of the Haber–Bosch process itself over a century ago — Pivot Bio. This startup, founded 15 years ago, engineers soil microbes to convert about 400 times more atmospheric nitrogen into ammonia than non-engineered microbe strains naturally would. “They are mini Haber–Bosch facilities, for all intents and purposes,” Pivot Bio’s CEO Chris Abbott told me, referring to the engineered microbes themselves.
The startup has now raised over $600 million in total funding and is valued at over $2 billion. And after toiling in the ag tech trenches for a decade and a half, this will be the first full year the company’s biological fertilizers — which are applied to either the soil or seed itself — will undercut the price of traditional fertilizers.
“Farmers pay 20% to 25% less for nitrogen from our product than they do for synthetic nitrogen,” Abbott told me. “Prices [for traditional fertilizers] are going up again this spring, like they did last year. So that gap is actually widening, not shrinking.”
Peer reviewed studies also show that Pivot’s treatments boost yields for corn — its flagship crop — while preliminary data indicates that the same is true forcotton, which Pivot expanded into last year. The company also makes fertilizers for wheat, sorghum, and other small grains.
Pivot is now selling these products in stores where farmers already pick up seeds and crop treatments, rather than solely through its independent network of sales representatives, making the microbes more likely to become the default option for growers. But they won’t completely replace traditional fertilizer anytime soon, as Pivot’s treatments can still meet only about 20% to 25% of a large-scale crop’s nitrogen demand, especially during the early stages of plant growth, though it’s developing products that could push that number to 50% or higher, Abbott told me.
All this could have an astronomical environmental impact if deployed successfully at scale. “From a water perspective, we use about 1/1000th the water to produce the same amount of nitrogen,” Abbott said. From an emissions perspective, replacing a ton of synthetic nitrogen fertilizer with Pivot Bio’s product prevents the equivalent of around 11 tons of carbon dioxide from entering the atmosphere. Given the quantity of Pivot’s fertilizer that has been deployed since 2022, Abbott estimates that scales to approximately 1.5 million tons of cumulative avoided CO2 equivalent.
“It’s one of the very few cases that I’ve ever come across in climate tech where you have this giant existing commodity market that’s worth more than $100 billion and you’ve found a solution that offers a cheaper product that is also higher value,” Rinzler told me. BEV led the company’s Series B round back in 2018, and has participated in its two subsequent rounds as well.
Meanwhile, Nitricity — a startup spun out of Stanford University in 2018 — is also aiming to circumvent the Haber–Bosch process and replace ammonia-based and organic animal-based fertilizers such as manure with a plant-based mixture made from air, water, almond shells, and renewable energy. The company said that its proprietary process converts nitrogen and other essential nutrients derived from combusted almond shells into nitrate — the form of nitrogen that plants can absorb. It then “brews” that into an organic liquid fertilizer that Nitricity’s CEO, Nico Pinkowski, describes as looking like a “rich rooibos tea,” capable of being applied to crops through standard irrigation systems.
For confidentiality reasons, the company was unable to provide more precise technical details regarding how it sources and converts sufficient nitrogen into a usable form via only air, water, and almond shells, given that shells don’t contain much nitrogen, and turning atmospheric nitrogen into a plant-ready form typically involves the dreaded Haber–Bosch process.
But investors have bought in, and the company is currently in the midst of construction on its first commercial-scale fertilizer factory in Central California, which is expected to begin production this year. Funding for the first-of-a-kind plant came from Trellis Climate and Elemental Impact, both of which direct philanthropic capital toward early-stage, capital-intensive climate projects. The facility will operate on 100% renewable power through a utility-run program that allows customers to opt into renewable-only electricity by purchasing renewable energy certificates,
Pinkowski told me the new plant will represent a 100‑fold increase in Nitricity’s production capacity, which currently sits at 80 tons per year from its pilot plant. “In comparison to premium conventional fertilizers, we see about a 10x reduction in emissions,” Pinkowski told me, factoring in greenhouse gases from both production and on-field use. “In comparison to the most standard organic fertilizers, we see about a 5x reduction in emissions.”
The company says trial data indicates that its fertilizer allows for more efficient nitrogen uptake, thus lowering nitrous oxide emissions and allowing farmers to cut costs by simply applying less product. According to Pinkowski, Nitricity’s current prices are at parity or slightly lower than most liquid organic fertilizers on the market. And that has farmers really excited — the new plant’s entire output is already sold through 2028.
“Being able to mitigate emissions certainly helps, but it’s not what closes the deal,” he told me. “It’s kind of like the icing on the cake.”
Initially, the startup is targeting the premium organic and sustainable agriculture market, setting it apart from Pivot Bio’s focus on large commodity staple crops. “You saw with the electrification of vehicles, there was a high value beachhead product, which was a sports car,” Pinkowski told me. “In the ag space, that opportunity is organics.”
But while big-name backers have lined up behind Pivot and Nitricity, the broader ag tech sector hasn’t been as fortunate in its friends, with funding and successful scale-up slowing for many companies working in areas such as automation, indoor farming, agricultural methane mitigation, and lab-grown meat.
Everyone’s got their theories for why this could be, with Lara Pierpoint of Trellis telling me that part of the issue is “the way the federal government is structured around this work.” The Department of Agriculture allocates relatively few resources to technological innovation compared to the Department of Energy, which in turn does little to support agricultural work outside of its energy-specific mandate. That ends up meaning that, as Pierpoint put it, ”this set of activities sort of falls through the cracks” of the government funding options, leaving agricultural communities and companies alike struggling to find federal programs and grant opportunities.
“There’s also a mismatch between farmers and the culture of farming and agriculture in the United States, and just even geographically where the innovation ecosystems are,” Emily Lewis O’Brien, a principal at Trellis who led the team’s investment in Nitricity, told me of the social and regional divides between entrepreneurs, tech investors and rural growers. “Bridging that gap has been a little bit tricky.”
Still, investors remain optimistic that one big win will help kick the money machines into motion, and with Pivot Bio and Nitricity, there are finally some real contenders poised to transform the sector. “We’re going to wake up one day and someone’s going to go, holy shit, that was fast,” Abbott told me. “And it’s like, well you should have been here for the decade of hard work before. It’s always fast at the end.”
The most popular scope 3 models assume an entirely American supply chain. That doesn’t square with reality.
“You can’t manage what you don’t measure,” the adage goes. But despite valiant efforts by companies to measure their supply chain emissions, the majority are missing a big part of the picture.
Widely used models for estimating supply chain emissions simplify the process by assuming that companies source all of their goods from a single country or region. This is obviously not how the world works, and manufacturing in the United States is often cleaner than in countries with coal-heavy grids, like China, where many of the world’s manufactured goods actually come from. A study published in the journal Nature Communications this week found that companies using a U.S.-centric model may be undercounting their emissions by as much as 10%.
“We find very large differences in not only the magnitude of the upstream carbon footprint for a given business, but the hot spots, like where there are more or less emissions happening, and thus where a company would want to gather better data and focus on reducing,” said Steven Davis, a professor of Earth system science in the Stanford Doerr School of Sustainability and lead author of the paper.
Several of the authors of the paper, including Davis, are affiliated with the software startup Watershed, which helps companies measure and reduce their emissions. Watershed already encourages its clients to use its own proprietary multi-region model, but the company is now working with Stanford and the consulting firm ERG to build a new and improved tool called Cornerstone that will be freely available for anyone to use.
“Our hope is that with the release of scientific papers like this one and with the launch of Cornerstone, we can help the ecosystem transition to higher quality open access datasets,” Yohanna Maldonado, Watershed’s Head of Climate Data told me in an email.
The study arrives as the Greenhouse Gas Protocol, a nonprofit that publishes carbon accounting standards that most companies voluntarily abide by, is in the process of revising its guidance for calculating “scope 3” emissions. Scope 3 encompasses the carbon that a company is indirectly responsible for, such as from its supply chain and from the use of its products by customers. Watershed is advocating that the new standard recommend companies use a multi-region modeling approach, whether Watershed’s or someone else’s.
Davis walked me through a hypothetical example to illustrate how these models work in practice. Imagine a company that manufactures exercise bikes — it assembles the final product in a factory in the U.S., but sources screws and other components from China. The typical way this company would estimate the carbon footprint of its supply chain would be to use a dataset published by the U.S. Environmental Protection Agency that estimates the average emissions per dollar of output for about 400 sectors of the U.S. economy. The EPA data doesn’t get down to the level of detail of a specific screw, but it does provide an estimate of emissions per dollar of output for, say, hardware manufacturing. The company would then multiply the amount of money it spent on screws by that emissions factor.
Companies take this approach because real measurements of supply chain emissions are rare. It’s not yet common practice for suppliers to provide this information, and supply chains are so complex that a product might pass through several different hands before reaching the company trying to do the calculation. There are emerging efforts to use remote sensing and other digital data collection and monitoring systems to create more accurate, granular datasets, Alexia Kelly, a veteran corporate sustainability executive and current director at the High Tide Foundation, told me. In the meantime, even though sector-level emissions estimates are rough approximations, they can at least give a company an indication of which parts of their supply chain are most problematic.
When those estimates don’t take into account country of origin, however, they don’t give companies an accurate picture of which parts of their supply chains need the most attention.
The new study used Watershed’s multi-region model to look at how different types of companies’ emissions would change if they used supply chain data that better reflected the global nature of supply chains. Davis is the first to admit that the study’s findings of higher emissions are not surprising. The carbon accounting field has long been aware of the shortcomings of single-region models. There hasn’t been a big push to change that, however, because the exercise is already voluntary and taking into account global supply chains is significantly more difficult. Many countries don’t publish emissions and economic data, and those that do use a variety of methods to report it. Reconciling those differences adds to the challenge.
While the overall conclusion isn’t surprising, the study may be the first to show the magnitude of the problem and illustrate how more accurate modeling could redirect corporate sustainability efforts. “As far as I know, there is no similar analysis like this focused on corporate value chain emissions,” Derik Broekhoff, a senior scientist at the Stockholm Environment Institute, told me in an email. “The research is an important reminder for companies (and standard setters like the Greenhouse Gas Protocol), who in practice appear to be overlooking foreign supply chain emissions in large numbers.”
Broekhoff said Watershed’s upcoming open-source model “could provide a really useful solution.” At the same time, he said, it’s worth noting that this whole approach of calculating emissions based on dollars spent is subject to significant uncertainty. “Using spending data to estimate supply chain emissions provides only a first-order approximation at best!”
The decision marks the Trump administration’s second offshore wind defeat this week.
A federal court has lifted Trump’s stop work order on the Empire Wind offshore wind project, the second defeat in court this week for the president as he struggles to stall turbines off the East Coast.
In a brief order read in court Thursday morning, District Judge Carl Nichols — a Trump appointee — sided with Equinor, the Norwegian energy developer building Empire Wind off the coast of New York, granting its request to lift a stop work order issued by the Interior Department just before Christmas.
Interior had cited classified national security concerns to justify a work stoppage. Now, for the second time this week, a court has ruled the risks alleged by the Trump administration are insufficient to halt an already-permitted project midway through construction.
Anti-offshore wind activists are imploring the Trump administration to appeal this week’s injunctions on the stop work orders. “We are urging Secretary Burgum and the Department of Interior to immediately appeal this week’s adverse federal district court rulings and seek an order halting all work pending appellate review,” Robin Shaffer, president of Protect Our Coast New Jersey, said in a statement texted to me after the ruling came down.
Any additional delays may be fatal for some of the offshore wind projects affected by Trump’s stop work orders, irrespective of the rulings in an appeal. Both Equinor and Orsted, developer of the Revolution Wind project, argued for their preliminary injunctions because even days of delay would potentially jeopardize access to vessels necessary for construction. Equinor even told the court that if the stop work order wasn’t lifted by Friday — that is, January 16 — it would cancel Empire Wind. Though Equinor won today, it is nowhere near out of the woods.
More court action is coming: Dominion will present arguments on Friday in federal court against the stop work order halting construction of its Coastal Virginia offshore wind project.