You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
On Tesla’s losses, Google’s storage push, and trans-Atlantic atomic consensus

Current conditions: Hurricane Kiko is soaking Hawaii and slashing the archipelago with giant waves • Nearly a foot of rain is forecast to fall on parts of Texas, risking flash floods • Dry, windy weather across broad swaths of South Africa is bringing “extremely high” fire risk.
 
China’s clean energy boom is bringing a global decline in fossil fuel demand into sight amid declines in usage in the buildings, vehicles, and industries of the world’s second-largest economy, according to the think tank Ember’s latest China Energy Transition Review. The report, released Tuesday morning, found that exports of solar panels, batteries, electric vehicles, and heat pumps are soaring, particularly to emerging economies, making the possibility of developing nations making possible an “energy leapfrog” over the coal phase of growth. From 2015 to 2023, China’s end consumption of fossil fuels fell 1.7% across buildings, industry and transport, while electricity use as a replacement rose by 65%. In power generation, fossil output dropped 2% in the first half of 2025 compared to the same period last year, as wind and solar generation soared by 16% and 43%, respectively. Last year alone, Beijing invested $625 billion in clean energy, 31% of the global total.
“China is now the main engine of the global clean energy transition,” Muyi Yang, coordinating lead author of Ember’s 2025 analysis, said in a statement. “Policy and investment decisions made in China over the last two decades are fundamentally changing the basis of China’s own energy system, and enabling other countries to also move swiftly from fossil to clean.”
As Americans scramble to buy electric vehicles ahead of the expiration of the $7,500 consumer tax credit at the end of this month, fewer of those cars are Teslas. The preliminary August data Cox Automotive released on Monday showed the best month for EVs in U.S. history was the worst for Tesla ever recorded. EVs climbed to almost 10% of total car sales last month, but Tesla’s share fell to 38%, with 55,000 cars sold all month. That’s up just 3% compared to July and down 6% from the year prior, while the company’s total market share fell from just over 40% in July and 45% in the first half of the year. By contrast, Heatmap’s Matthew Zeitlin noted, Tesla commanded about 80% of U.S. EV sales in 2020.
Also on Tuesday, the company unveiled two new energy storage products that could boost its utility division. At the RE+ conference in Las Vegas, Tesla presented the Megapack 3, the latest generation of its utility-scale battery system, and the Megablock, which integrates the Megapack 3 with transformers and switchgear. Batteries were Tesla’s fastest growing business in the first quarter of this year, as Matthew reported in April, but the company feared that tariffs would affect the business. “The energy segment — which includes the company’s battery energy storage businesses for residences (Powerwall) and for utility-scale generation (Megapack) — has recently been a bright spot for the company, even as its car sales have leveled off and declined.”
Google inked a deal with the Salt River Project, the utility serving much of Arizona’s largest metropolis, to test the performance of long-duration energy storage projects. The first-of-a-kind research collaboration aims to “better understand the real-world performance of emerging non-lithium ion long duration energy storage technologies” in the Phoenix area, the power company said in a press release. Google will fund a portion of the costs and evaluate data on the pilot projects’ operational success. “We believe that long duration energy storage will play an essential role in meeting SRP’s sustainability goals and ensuring grid reliability,” Chico Hunter, the nonprofit Salt River Project’s manager of innovation and development, said in a statement.
As I reported in this newsletter in July, Google also backed the Italian carbon dioxide-based storage startup Energy Dome as the tech giant pushes to expand its portfolio of technologies to power its data centers 24/7.
The European Union has been a solid backer of fusion energy research. But the anti-nuclear trifecta of Germany, Austria, and Luxembourg has long thwarted bloc-wide efforts to bolster fission, which provides the bulk of the continent’s electricity. With Berlin finally joining Paris in backing traditional nuclear power, that blockade is no longer holding. The European Commission has proposed spending $11.5 billion on bolstering research in both fusion and fission, the trade publication NucNet reported Monday.
Meanwhile in the United States, where nuclear power remains broadly supported across the political spectrum, the biggest question is how quickly new reactors can come online. The data center industry has now called on the Nuclear Regulatory Commission to streamline licensing of new reactors to help meet its surging demand for electricity. In a letter to NRC Chair David Wright shared with E&E News, the Data Center Coalition, a trade group representing server farms, urged the agency to update its regulations to ensure quicker deployment of advanced reactors. “Increasingly, DCC members are forming strategic partnerships and committing to offtake agreements with utilities and nuclear technology developers, injecting new momentum into this strategic sector,” wrote Cy McNeill, the group’s director of federal affairs. “We are approaching the cusp of a truly revitalized nuclear sector.”
The push comes amid what Heatmap’s Katie Brigham called a “nuclear power dealmaking boom.”
Patagonia’s billionaire founder helped popularize the greenest trend in apparel — buying less of higher quality, longer-lasting clothing. Now the retailer is pushing to bring that same ethos to the food business. The company’s edible offerings of tinned fish and crackers designed for hiking is now expanding into baby foods, oils, and sauces, The New York Times reported in a new profile of the retailer. Fifty years from now, founder Yvon Chouinard told the newsletter, “I could see the food business being bigger than the apparel business.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Arctic drilling, BYD’s drop, and Democrats’ timid embrace of nuclear recycling
Current conditions: Hurricane Melissa now a Category 2 storm, has left as much as $52 billion in damages in its wake • Sadly for trick-or-treaters, a new storm moving northward from the Mississippi Valley is forecast to bring heavy rains and gusty winds to the Northeast, particularly New England, on Halloween • Heavy rains are bringing the highest possible flood risk to Kenya today.
Oil giant Shell withdrew from its Atlantic Shores project to develop offshore wind off the coast of New Jersey and New York. In a press release on Thursday, the company said it was pulling out of a 50-50 joint venture with the French energy giant EDF as the Anglo-Dutch behemoth grapples with the Trump administration’s so-called “total war on wind.” The decision, the company said, “was taken in line with Shell’s power strategy,” which includes “shifting away from capital-intensive generation projects to assets that support our trading and retail strengths.” The move comes nearly a month after Shell’s top executive in the United States called out President Donald Trump for setting what she called a bad precedent for future administrations that would use the legal approaches the White House has taken to attack offshore wind against oil and gas, as I wrote here a few weeks ago.
The Senate voted Thursday to overturn Biden-era rules limiting drilling in the Alaskan Arctic. The 52-45 vote, in which Senator John Fetterman of Pennsylvania joined Republicans to vote in favor, canceled out the 2022 Biden administration plan that made just 52% of land in what’s known as the National Petroleum Reserve in Alaska available for drilling. A previous Trump administration proposal made 82% of the area eligible for drilling. “This will benefit North Slope communities with jobs & economic growth, and support their tax base to improve access to essential services like water and sewer systems and clinics,” Alaska Senator Dan Sullivan, who sponsored the legislation to withdraw the Biden-era rules, said in a post on X in September.
The move comes a week after Trump opened a broad swath of Alaskan wilderness to drilling, as I reported here.
Get Heatmap AM directly in your inbox every morning:
 
Chinese electric auto giant BYD reported another slump in its quarterly profits amid growing domestic competition. Much like Tesla, which has seen its market share in the U.S. drop in recent months as rivals surged ahead, BYD saw its third-quarter profits tumble 33% from a year earlier to roughly $1.1 billion. Total revenue dropped 3%. The Shenzhen-based company — the world’s largest electric automaker — remains dominant in China, but rivals Geely Automobile Holdings and Chongqing Changan Automobile Co. saw increases in third-quarter sales of 96% and 84% respectively, Bloomberg reported.
Still, BYD’s strength in the international market gives the Chinese company an edge over Tesla, the U.S.’s domestic EV champion. As Heatmap’s Matthew Zeitlin wrote recently, “Tesla’s stranglehold over the U.S. EV market may be weakening, so too is its hold on the international market.”
Real estate giant Related Companies agreed to build a data-center campus worth more than $7 billion on farmland outside Detroit, in what The Wall Street Journal called “one of the largest deals yet” for this class of property deals to power artificial intelligence. The 250-acre campus is the fourth new site announced as part of a $300 billion contract between Oracle and OpenAI to power the ChatGPT-maker’s Stargate project.
The news came the same day the small modular reactor startup Blue Energy announced a deal with the artificial intelligence company Crusoe to develop a nuclear-powered data center campus in Port of Victoria, Texas. The project, which aims to build up to 1.5 gigawatts of power, would first build natural gas-fired plants with the intention of phasing them out in favor of Blue Energy’s nuclear reactors by 2031. The nuclear company plans to construct its plants on sites where it can ship the reactors to the campus by barge. “We’re not really doing anything where there isn’t regulatory precedent in the past,” Blue Energy CEO Jake Jurewicz told nuclear scholar Emmet Penney on the podcast Nuclear Barbarians earlier this month. “In the end, it comes down to being really thoughtful with design, plant architecture, and site selection.”
Nuclear waste recycling was once a third-rail issue among liberals who, like former President Jimmy Carter, feared that the technology to extract additional reactor fuel from spent uranium risked sending the message worldwide that the U.S. supported continued weapons proliferation. But when the Senate Environment and Public Works Committee voted Wednesday to approve legislation to streamline the process for licensing nuclear recycling plants, only a handful of Democrats pushed back. The radioactive waste sitting at power plants across the U.S. is relatively tiny compared to the amount of electricity those fuel rods produced. But part of why the spent fuel remains dangerously toxic for so long is that it still contains the vast majority of the energy in the uranium. By reprocessing the enriched metal to extract the useful fuel isotopes, the nation’s waste stockpile would shrink and, by some estimates, the U.S. could power its entire grid system for more than a century.
At this week’s vote, the opposition stood out against the unanimous support for other bills to promote plastics cleanup and diesel emissions, E&E News reported. But the bipartisan Nuclear REFUEL Act attracted just a handful of dissenters, ultimately passing in a 16 to 3 vote. Separately, in Illinois late Thursday, Governor JB Pritzker signed legislation to lift the state’s moratorium on building nuclear reactors. That puts the state, by far the largest nuclear hub in the nation, in play for new large-scale reactors that the Trump administration has pledged to fund.
 
Happy Halloween, to all who celebrate. In the holiday spirit, would you like to read something a little spooky? Climate change is already taking a toll on the nation’s pumpkin crop. Extreme heat and rain are reducing how many gourds are available for jack-o-lanterns, as the National Oceanic and Atmospheric Administration warned last year. The downward trend continues. In the latest crop update from the U.S. Department of Agriculture, the per capita availability of pumpkins fell by 11%, more than five times the reduction in squash and twice the fall in sweet potatoes.
Deep Sky is running a carbon removal competition on the plains of Alberta.
Four years ago, Congress hatched an ambitious, bipartisan plan for the United States to become the epicenter of a new climate change-fighting industry. Like an idea ripped from science fiction, the government committed $3.5 billion to develop hulking steel complexes equipped with industrial fans that would filter planet-warming carbon dioxide out of the air.
That vision — to build regional hubs for “direct air capture” — is now languishing under the Trump administration. But a similar, albeit privately-funded initiative in Canada has raced ahead. In the span of about 12 months, a startup called Deep Sky transformed a vacant five-acre lot in Central Alberta into an operational testing ground for five different prototypes of the technology, with more on the way.
I had been following the project since early last year, after receiving roughly a dozen press releases from Deep Sky about all of the companies it was setting up partnerships with. But it was hard to believe the scope of the ambition until I saw it with my own eyes.
CarbonCapture Inc., one of the companies piloting its technology at Deep Sky, had originally planned to deploy in the U.S., but has since packed up and headed north. The Los Angeles-based startup recently shipped all the equipment for its first demonstration project from Arizona to the Deep Sky site on four flatbed trucks. On a crisp October day, under a bluebird sky, the company’s CEO Adrian Corless stood in front of the newly installed towering mass of metal fans and explained the move.
“Because of what’s been going on in the U.S. and the backing away from support of climate technology and carbon removal, we made a decision back in February that we were going to redirect our focus and effort to Canada,” he told an audience of Canadian officials who had come to see the tech up close.
“Eight weeks ago, this was just dirt,” Corless said. “Today, we’re actually going to bring the first of our modules to life.” Then he invited Danielle Smith, Alberta’s conservative Premier, to do the honors. She pointed her fingers like a pistol and yelled, “Hit it!”
Behind her, the fans started to whir.
Deep Sky is not like other companies working in direct air capture, or DAC. Whereas most startups are developing their own patented designs and then raising money to go out and build demonstrations, Deep Sky is solely a project developer. It buys DAC systems, operates them, and sells credits based on the amount of carbon it’s able to remove from the air and sequester underground. Other companies buy these credits to offset their own emissions.
In the spring of 2024, Damien Steel, Deep Sky’s then-CEO, explained the theory of the case to me. It takes a different set of skills to engineer the tech than to deploy it in the real world, he said, which requires procuring energy to run the system and developing storage sites for the captured CO2. “There’s a reason why renewable developers don’t build their own windmills and solar panels,” he told me.
DAC technology is nowhere near as advanced as solar panels or wind turbines. Removing carbon dioxide from the air, where it makes up just 0.04% of the total volume, is currently far too energy-intensive to be commercially viable. There are more than 100 companies around the world trying to crack it.
Deep Sky’s first ambition was to buy a bunch of prototypes, test them next to each other, and figure out which were the most promising. Steel told me he was in the process of acquiring 10 unique DAC systems to install at a “commercialization and innovation center” known as Deep Sky Labs.
 
By the end of that summer, the company had signed a lease for the site in Alberta. Less than a year later, this past June, it had completed initial construction and was ready to begin hooking up DAC systems. In August, it announced that it had successfully injected its first captured carbon into an underground storage well. I had never seen one DAC project in the real world, let alone five. The company suggested I come for a tour during CarbonCapture’s launch event in late October.
By then Steel, who joined Deep Sky after more than a decade in venture capital, had stepped down from the CEO role “for personal reasons,” he wrote in a LinkedIn post, though he stayed on as an advisor. My guide would be his successor, former Chief Operating Officer Alex Petre.
Deep Sky Labs, now called Deep Sky Alpha, is in Innisfail, a town of about 8,000 people surrounded by farmland and prairie. To get there, I flew to Calgary and drove 75 miles north on Highway 2, the primary throughway that connects to Edmonton. Innisfail is dense and suburban-looking, with an industrial corridor on the western edge of town. Deep Sky was on its outermost edge, on the site of a former sewage lagoon the town had recently reclaimed, and sat catty corner to a welding and manufacturing company, which, as I was later told — multiple times — was developing hydrogen-powered locomotives.
A bright white cylindrical building about the size of an airplane hangar, emblazoned with “Deep Sky” in big black letters, was visible from half a mile away. As I pulled up to the site, workers in neon vests and hard hats were scurrying among outcroppings of pipes and metal structures. Unsure of where to enter, I parked on the road and wandered up to some trailers outside the perimeter. Petre poked her head out of one and beckoned me inside an office, where she fitted me with my own vest and hard hat so I could get a closer look.
“This is the only place in the world where we are putting together different direct air capture technologies side by side,” she told me, as we passed through a gate and began walking the grounds. Other than the sound of trucks and excavators driving around, it was fairly quiet. None of the DAC units were operating that day — one was down for maintenance, one for the winter, and the rest were still under construction.
The first stop on the tour was a modest black shipping container labeled SkyRenu, a DAC company based in Quebec. It was the smallest system there, designed to capture just 50 tons of carbon per year — roughly the annual emissions from a dozen cars. Directly across from it, workers appeared to be fitting some pipe on a much larger and more complicated structure resembling Paris’ Pompidou Center. This was United Kingdom-based AirHive’s system, which would have the capacity to capture about 1,000 tons per year once completed.
 
DAC systems are feats of chemistry and mechanical engineering. At their core is a special material called a sorbent, a liquid or solid designed to attract carbon dioxide molecules like a magnet. The process is generally as follows:. First, the sorbent is exposed to the air, often with the help of fans. Once saturated with carbon, the sorbent is heated or zapped with electricity to pry loose the CO2. The resulting pure CO2 gas then gets piped to a processing facility, where it’s prepared for its ultimate destination, whether that’s a product like cement or fuel or, in the case of Deep Sky, a deep underground rock formation where it will be stored permanently.
Deep Sky’s aim was to trial as many iterations of the tech as it could at Alpha, Petre told me. That’s because what works best in Alberta’s climate won’t necessarily be optimal in Quebec or British Columbia, let alone hotter, more humid zones. “When the feedstock, which is ambient air, ends up being so different, we need multiple different technologies to work,” she said.
Case in point: A DAC system designed by Mission Zero, another U.K company, was offline the day I visited — and would remain so until next spring. It utilized a liquid sorbent and had to be drained so that the sorbent wouldn’t freeze when temperatures dropped below freezing overnight. The challenge wasn’t entirely unique to Mission Zero, however. “Everyone is struggling with winter,” Petre told me.
 
Alpha is piloting systems with liquid sorbents and solid sorbents, variations on the chemistry within each of those, and systems that use different processes to release the carbon after the fact. The development cost ran to “over $50 million” Canadian, Petre told me. The company raised about that amount in a Series A back in 2023. It also won a $40 million grant from Bill Gates’ venture capital firm Breakthrough Energy in December 2024, and this past June, the Province of Alberta awarded Deep Sky an additional $5 million from an emissions-reduction fund paid for by fees on the fossil fuel industry.
The company fully owns and operates almost all of the DAC units onsite, although it’s still working with the vendors to troubleshoot issues and sharing data with them to improve performance.
When it comes to Carbon Capture Inc., however, the arrangement is a bit different. Deep Sky has agreed to host the company’s tech, giving it access to power, water, and underground CO2 storage, but CarbonCapture will retain ownership and help with operations, and the two companies will share the proceeds from any revenue the unit generates.
Petre said the structure was mutually beneficial — Deep Sky gets to demonstrate its strengths as a full-service site developer, while CarbonCapture gets access to a plug-and-play spot to pilot its system in the real world. The U.S. company is also looking to expand in Canada. “There’s lots of potential collaboration down the line,” Petre said.
Before Trump arrived at the White House, CarbonCapture had been making aggressive plans to grow in the states. In the fall of 2022, before the company had even demonstrated its tech outside of a lab, it announced that it would build a project capable of removing 5 million tons of carbon per year in Wyoming by 2030. It later leased an 83,000-square-foot manufacturing facility in Arizona to produce the equipment for the project.
At the time, the Biden administration was integrating carbon removal — of which DAC is just one variety — into its “whole-of-governement” climate strategy. The Department of Energy rebranded its Office of Fossil Energy to reflect a new focus on “carbon management,” a broad term that encompasses carbon captured at fossil fuel plants as well as from the atmosphere. In addition to overseeing the development of the DAC Hubs, the agency was running more than a dozen other grant programs and research initiatives mandated by Congress that were intended to help the nascent industry get established in the U.S. Biden’s 2022 climate law, the Inflation Reduction Act, also increased the tax credit available to DAC projects from $50 for every ton of carbon stored underground to $180.
As helpful as all of that may have been for the nascent industry, Canada was arguably going further. In 2022, the country finalized its own tax credit — an investment tax credit — that would cover 60% of the capital cost of building a direct air capture plant. The approach, while inspired by the U.S. subsidy, is geared more at de-risking project development than rewarding project success. The following year, the province of Alberta said it would offer an additional 12% investment tax credit on top of that.
Alberta was also becoming a leader in developing carbon storage infrastructure. Despite — or, more likely, because of — its oil-based economy, the province views carbon capture and storage as a “necessary pathway” that “will help Alberta transition to a low-carbon future.” Canada is the fourth largest producer of crude oil in the world, and the bulk of it comes from Alberta’s environmentally destructive tar sands.
 
The government of Alberta owns most of the subsurface rights there, unlike in the U.S., where such rights are bestowed to landowners. That meant the province could simply offer companies leases to develop carbon injection wells. After two requests for proposals, the province selected 24 projects to “begin exploring how to safely develop carbon storage hubs.” A few of them, including Deep Sky’s storage partner — the Meadowbrook Hub Project north of Edmonton — are now operating.
Corless, of CarbonCapture, told me he spent a lot of time in Washington talking to the new staff at the DOE after Trump’s inauguration. It became increasingly clear to him that the DAC Hubs funding — and the general support for the sector enjoyed under the previous administration — would be going away.
By that point, the company had already planned to move its Wyoming venture to Louisiana after struggling to secure a grid connection at its original site. CarbonCapture had been awarded a DAC Hubs grant to conduct an engineering study for the project, but it received a notice from the DOE that the grant was canceled earlier this month. The company is still considering its options for how or whether to move forward.
On the same day the news leaked, CarbonCapture announced that it was shifting its plans to build a separate, 2,000 ton-per-year pilot plant from Arizona to Canada. Corless told me the company had originally planned to partner with a cement company to store the captured carbon in building materials, but Alberta offered more attractive commercial prospects. The company could more quickly access geologic carbon storage there, enabling it to sell carbon credits, which command a higher price than experiments in carbon-cured cement.
The timing of the announcement was pure coincidence. The poor prospects for an American DAC industry under Trump weren’t not a factor in the move, however. CarbonCapture wanted its pilot project to be a “springboard” for its first commercial plant, and Canada was attractive “given the favorable economic incentives, favorable regulatory environment, and the general positive interest in deploying DAC,” the company’s marketing director, Ethan Stackpole, told me in an email. “This is in contrast to the current atmosphere in the U.S.”
CarbonCapture signed a contract with DeepSky to host the pilot, dubbed Project Tamarack, in May, and set up a Canadian business entity called True North to build it. When I visited the site, the company was in the final stages of “commissioning” the unit, i.e. getting it ready to operate. The equipment had been manufactured at the company’s factory in Arizona, but it may end up being the only system produced there. The facility is now sitting idle.
Petre and I followed the tidy rows of wires and pipes that wound through Deep Sky Alpha, carrying electricity, water, and compressed air to each DAC system. A set of return pipes delivers the captured CO2 to Deep Sky’s central processing facility — the big white cylindrical building — where the company measures the output from each system before combining it all into a single stream. Inside, she showed me how the gas moved between large, tubular instruments that measure, dry, compress, and cool it into a liquid.
“Everything outside is first of a kind,” she said. “All of this equipment in here is fairly standard energy oil and gas equipment, it’s just arranged in a very different way.”
Sensors monitoring the wires and pipes enable Deep Sky to measure how much energy and water goes into producing a ton of CO2. Finally, trucks carry away the liquid CO2 to the Meadowbrook storage hub about two hours north, where an underground carbon sequestration well operated by a separate company called Bison Low Carbon Ventures provides it a permanent home.
While trucking the CO2 wasn’t ideal, the amount Deep Sky would capture at Alpha was so small that it made more sense to partner with Bison, which already had a permitted well, than to try to build one itself, Petre explained. When Deep Sky scales up at its next facility, which it expects to build in Manitoba, the company aspires to drill its own carbon sequestration wells on site.
Despite Alberta’s advantages for DAC, the location is not without drawbacks. The province had imposed a seven-month moratorium on renewable energy approvals from 2023 to 2024, which led to project cancellations and put development on ice. When the ban lifted, new regulations restricting wind and solar on agricultural land and near designated “pristine viewscapes” continued to make it difficult to build. Petre told me Deep Sky was one of only two companies in Alberta to secure a power purchase agreement with a solar farm last year.
“If I said, ‘I need 150 megawatts for my next facility right now,’ it would be a fairly difficult process,” she said. “There isn’t that much capacity online, and I would have to compete with data centers and a whole bunch of other folks who are also looking to come here and develop.” The company has started looking into building its own renewable energy supply on site, she said.
That anti-renewable sentiment stems from the region’s strong oil and gas identity. After my tour with Petre, I sat through a short program celebrating Project Tamarack’s launch, where Alberta’s Premier Danielle Smith conveyed her excitement by asserting that the province was “working to phase out emissions, not oil and gas production.” Alberta would double its energy production in the coming years, she said, while still reaching a goal of carbon neutrality by 2050.
Of all the extraordinary things I had seen and heard that day, this was the most brazen. The promise of direct air capture — the entire reason to expend time and energy and funds on plucking CO2 molecules out of the air — is that it’s one of the few ways to clean up the carbon that’s already in the atmosphere. Using it to offset continued oil and gas production might slow climate change, but there are a lot of other cheaper, more efficient, and more effective ways to reduce emissions — like switching to carbon-free power and electric cars.
I asked Corless about Smith’s comments later that day over coffee. Was it realistic to double oil production and go carbon neutral? He was coy. It would be very hard, he said. But it also depends on whether you’re talking about neutralizing the emissions from producing the oil versus from burning it. Corless seemed to view the argument as a political necessity, if a dubious one, to win government support for scaling DAC.
“I was hopeful that when the new administration came in, we could create an economic argument and tie what we’re doing to energy dominance and energy security,” he said, of the Trump administration. “It was just, I think, a bridge too far. Whereas here, that narrative is landing.”
Petre was more equivocal, responding that Deep Sky acknowledges that “we are not going to move away from oil and gas tomorrow,” and takes this as motivation to “get direct air capture to as low cost as possible and as easy to deploy as possible.”
In addition to the five DAC units currently installed at Alpha — SkyRenu, Airhive, CarbonCapture, Mission Zero, and a system from a German company called Phlair — Deep Sky has announced plans to bring two more units to the site from Skytree and GE Vernova. A few other deals are in the works but not yet public, Petre told me.
Even once Deep Sky Alpha has enough capacity installed to be printing carbon credits by the day, it won’t have proven that DAC is viable at scale. It’s not meant to. Many aspects of the facility are intentionally inefficient because of its nature as a testing ground.
“We had to do a lot of overspec-ing and oversizing of things,” Petre said. All the excess makes her optimistic about Deep Sky’s next project, however, where it will scale up a smaller number of systems to a much larger capacity. “If we can do something this complex, there’s a lot of room to simplify,” she said.
Hurricane Melissa made landfall over Cuba with winds raging up to 120 miles per hour | If the Category 5 storm veers westward as it heads north, Melissa will bring roiling seas to Atlantic Canada; if it veers eastward, it will bring rain to the United Kingdom | Heavy snowfall in Tibet forced Chinese authorities to shut down access to Mount Everest.
 
China’s commerce ministry promised to suspend its latest export restrictions on rare earths for at least a year as part of a trade truce President Donald Trump brokered with President Xi Jinping. Under rules Beijing issued on October 8, Chinese companies were required to obtain the ministry’s permission before exporting equipment to process ore and technology for mining and refining rare earths, magnets made from the metals, and components for electric vehicle battery manufacturing. That doesn’t mean Beijing is dialing back all its restrictions on rare earths, over which China controls roughly 90% of the world’s refining capacity. “Importantly, China’s commerce ministry today made no mention of suspending its April 4 regulations, which require export licenses for seven kinds of rare earths and magnets made from them,” The New York Times’ Beijing bureau chief, Keith Bradsher, wrote Thursday morning. “The April rules continue to disrupt production at the many factories in the United States and Europe that need Chinese materials.”
That’s bad news for Western rare earth companies whose stocks have been on a tear since China announced the latest export controls. But it’s good news for clean-energy companies who need access to the minerals — and not their only cause for optimism this morning. The Federal Reserve cut its benchmark interest rate by a quarter of a percentage point, bringing the cost of borrowing down to its lowest level in three years. The move came amid a flurry of economic uncertainty from the United States’ ongoing trade conflicts, accusations from the Trump administration’s over jobs and inflation reports, and the ongoing government shutdown. For the first time since 2019, two Fed officials dissented over the rate cut decision — one who wanted a larger, half-point cut, and the other who called for holding steady at the current level. The political upheaval aside, any cut is good news for renewable energy developers. As Heatmap’s Matthew Zeitlin wrote after last month’s quarter-point cut, the move may “provide some relief to renewables developers and investors, who are especially sensitive to financing costs.” But it still “may not be enough” to erase the challenges from higher tariffs.
On Wednesday, General Motors pinkslipped more than 3,400 workers who build electric vehicles and batteries as the company “rapidly adjusts to new policy under President Donald Trump and sluggish interest among U.S. buyers,” The Detroit News reported. The automaker’s Detroit-area all-electric assembly plant, called Factory Zero, will be the hardest hit, with 1,200 cuts.
GM had emerged this year as the best-selling electric vehicle maker in the country, with record sales in the most recent quarter. By eliminating the $7,500 federal tax credit for electric vehicles last month as part of his One Big Beautiful Bill Act, however, Trump cost GM “1.6 billion,” as Andrew Moseman wrote last week in Heatmap.
Just over a week ago, as I wrote here, Rhode Island Senator Sheldon Whitehouse warned that his vote on the bipartisan permitting reform ideas he helped put forward depended on the Trump administration easing up on what we’ve frequently called in this newsletter the “total war on wind.” Secretary of the Interior Doug Burgum balked at the idea. And yet, talks seem to be progressing. On Wednesday, E&E News reported that Whitehouse, the top Democrat on the Environment and Public Works Committee and a longstanding climate hawk, said talks were "pretty constant right now” and that the Senate planned to release a framework by the end of the year. He added that “there’s good faith on all four corners, referring to Environment and Public Works Chair Shelley Moore Capito, a West Virginia Republican, Energy and Natural Resources Chair Mike Lee, a Utah Republican, and ranking member Martin Heinrich, a New Mexico Democrat. “I don’t think we necessarily have to be down to legislative language, but it has to be clear enough to where we’re going so our colleagues have a chance to look at it and kick the tires and see what their concerns are.”
Kentucky is reeling from the looming halt to federal food stamps. Now the Trump administration wants to let the nation’s biggest grid operator charge Kentuckians to keep aging fossil fuel stations open in other states? No way, say one of the state’s biggest utilities and its attorney general. As Utility Dive reported, East Kentucky Power Cooperative, which serves nearly a quarter of the state’s ratepayers, and Attorney General Russell Coleman are challenging the PJM Interconnection’s plan to make utilities across its system pay for the Department of Energy’s emergency orders to keep coal-, oil-, and gas-fired power plants set to close this year open past their expiry dates. Much like the coal plant the agency ordered to stay open in Michigan, the Energy Department recently directed utilities in the PJM service area to keep two gas- and oil-fired units online near Philadelphia and a 400-megawatt oil-fired plant going near Baltimore. In August, the Federal Energy Regulatory Commission rejected East Kentucky Power Cooperative’s arguments against having to pay for PJM’s overall costs. But now the utility and the attorney general, a Republican, are fighting back against the latest filings.
Elsewhere in the PJM territory, chip giant Nvidia is investing in a data center built to smooth out power use as demand for artificial intelligence surges. The project, announced in Axios, is “the first commercial rollout of software that adjusts energy draw in real time.” Nvidia is set to deploy grid-regulating software by the startup Emerald AI at a server farm under construction in Virginia. Once completed, the facility will be “the first built to a new industry-wide certification on flexible power.”
The Los Angeles Department of Water and Power board voted unanimously to approve a contentious plan for an $800 million conversion of two units at the Scattergood Generating Station. The 3 to 0 decision to sign off on the plant’s environmental impact report clears the way for the city’s largest gas-fired plant to burn both natural gas and hydrogen. While the regulators said the plan was in line with the city’s goal of running on 100% renewables by 2035, since green hydrogen is made with clean electricity, opponents told the Los Angeles Times that the project would prolong the use of fossil fuels in the city and contribute to local pollution from nitrogen oxides.
If successful, the conversion will be one of the country’s biggest experiments in swapping gas for hydrogen. On Long Island in New York, utility giant National Grid announced a plan in August to install the world’s first linear generator that will run entirely on green hydrogen. Yet the efforts come as the Trump administration has eliminated federal funding for two of the seven regional hydrogen hubs set up under the bipartisan Infrastructure Investment and Jobs Act that were specifically designed to commercialize green hydrogen. And now, as Heatmap’s Emily Pontecorvo wrote, a list of rumored cuts that could come once the government shutdown ends puts the other five hubs on the chopping block.
Artificial intelligence is starting to decode the language of whales. Now biologist David Gruber of the Cetacean Translation Initiative, who has spent decades trying to understand marine life, said that the work his research outfit is doing to detect patterns in whale songs could “dramatically strengthen legal protections for nonhuman life,” Inside Climate News reported. Already, Gruber’s work has uncovered a sperm whale “alphabet,” finding that click patterns shift with conversational context, and discovered that whales even have dialects with pods from different parts of the ocean “vocalizing as differently as a New Yorker and a Texan.”