You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:

If one were to go looking for a Permian Basin of wind — a wind energy superregion waiting to be born — the actual Permian Basin wouldn’t be a bad place to start.
Wind potential is everywhere in the U.S., off the coasts and in the Mountain West especially, and the Inflation Reduction Act is expected to catalyze 127 gigawatts of onshore wind by 2030, some of which has already been built. It’s Texas, however, that produces more wind power than any other state in the country. And while neighboring New Mexico has fewer turbines, it was one of the country’s leading installers of utility-scale wind in 2021; last month, Pattern Energy announced it had closed financing on SunZia, a long-awaited 3.5 GW wind farm about three hours northwest of the Permian Basin’s New Mexico portion. Once it’s completed, the project will make the state a national leader in installed capacity.
Texas and New Mexico have, respectively, the most and third-most potential wind capacity in the country. While the bulk of jobs created by wind farms come during their construction, turbines still require long-term maintenance and operation — “Jiffy Lube 300 feet in the air,” Andy Swapp, a faculty member at Mesalands Community College’s Wind Energy Technology program in Tucumcarie, New Mexico, called it. According to data from Revelio Labs, a workforce tracking company, more than 20% of wind jobs created in the past year were in Texas.
There’s no comprehensive estimate of how many wind technicians will be necessary to serve America’s wind farms by 2030, but we can make some educated guesses. In 2022, 11,200 Americans worked as wind technicians, with just under half of them in Texas, according to the Bureau of Labor Statistics, servicing a total of 144 GW of capacity (including a negligible amount of offshore wind) — about 0.08 jobs per megawatt. (Other estimates range from 0.1-10.8 permanent jobs per megawatt.)
By that math, just for the buildout of onshore wind spurred by the IRA — and leaving aside the 30 GW of offshore wind that the Biden administration has pledged to build by 2030 — the U.S. will need nearly 10,000 new wind technicians, a fair chunk of whom will be living, spending, and paying taxes in New Mexico and Texas.
Regardless of how the actual numbers shake out (many technicians travel between sites, almost everyone who I spoke with for this story told me), they raise a thorny question: How can the nascent wind industry nearly double the size of its workforce in a matter of years — especially where the industry is already strong?
In and around the Permian Basin, onshore wind is primed for a breakout. SunZia’s turbines will sit about 200 miles away from New Mexico’s Lea and Eddy counties, which account for 29% of the Permian Basin’s oil production. Slightly northwest of Lea is the Oso Grande Project, with 247 MW of wind power; Sweetwater, Texas, is surrounded by wind projects ranging from around 40 to 420 MW. The Permian Basin itself has plentiful wind — more than 2 GW — but there is broad agreement that much more of the area is ripe for wind projects.
All of these wind farms, of course, will need technicians, along with managers and operations and maintenance personnel. Pattern, a spokesperson told me, will “prioritize local vendors, suppliers and workforce,” and is building out its own GWO — short for Global Wind Organisation training, which has become an industry standard certification for working at heights — with training partners for SunZia, which promises more than 100 full-time jobs.
To work as an entry-level wind technician, the company asks for a one-year college or technical school certificate, or else a similar amount of experience in wind-power or other related training programs, or some combination of the two. Other employers in the area make similar asks, though a handful require just a high school diploma.
When more wind farms arrive, locals in West Texas looking for local training programs will have a handful of options, including a course at Texas Tech, a paid training institution, and a few community colleges with wind training, four of which are west of San Antonio.
As of summer 2023, roughly 200 students were enrolled in Texas State Technical College programs, Jones told me, and around 75% of them are on some form of financial aid to cover the $13,000 tuition for the 20-month course. Texas’s powerhouse for creating technicians doesn’t always serve its own state, or even the wind industry. Jones’s students don’t always go into wind — some even go into oil and gas — and they don’t always stay in Texas.
Texas Tech’s wind energy program is robust, Suhas Pol, the director of the university’s renewable energy programs, told me, but it’s primarily aimed at sending students into project management, development and engineering. As of this year, he estimated around 100 students are majoring in renewables, but he thinks awareness on campus is low. Pol and his fellow administrators have conjectured that “many folks are not aware that there is such a program available,” he said.
By next academic year, the university is planning to launch a course that offers additional qualifications for students who want to expand on their associates’ degrees, Pol added. Still, he thinks the field as a whole suffers from a lack of faculty to teach students — because so few people enter the industry, not enough can teach others how to join.
Adrian Cadena’s career path is pretty typical of wind technicians in the U.S., at least according to the BLS. Cadena, a former paramedic in San Antonio, was exhausted by the COVID-19 pandemic. While on a road trip in Texas, he wound up pulling over and walking into the middle of a wind farm, where he took out a cell phone and called his wife. “I said, ‘I think I’m done with medicine,’” Cadena told me. “My wife said, ‘I think you’ve lost your mind.’”
While working at a local hospital, Cadena completed a wind training program at a community college. At a clean energy career fair, he landed a job in safety at a small firm based near Houston. That firm paid for his GWOs. Soon after, an opportunity came up at Vestas Wind Systems — one of the industry’s giants — to work as a traveling safety contractor. Then last summer, the call came from another contractor to serve as a project manager on the safety side for Vineyard Wind, one of the country’s first large-scale offshore wind farms, which began delivering electricity just this week.
The federal government is also considering laying its own paths, as evidenced by the launch of the American Climate Corps in September; its first cohort could start as soon as this summer. Other roads leading to wind farms can pass through union-based apprenticeships, although those generally create “well-rounded electricians,” not necessarily wind specialists, according to Bo Delp, executive director of the Texas Climate Jobs Project.
Still, people who understand electronics are in high demand. Many job openings on Indeed across Texas this summer noted that a certification or degree in wind energy is preferred, while experience with mechanics and electronics is typically required, even for entry-level positions. George Jackiewicz, a safety coordinator currently based in Long Island who has worked around the country, told me that “if you’ve got common sense, some mechanical skills, a little bit of electrical, you can get in with zero experience.”
Companies, he explained, will train their own workers, including through their own apprenticeships. In conjunction with Vestas, Sky Climber Renewables runs TOP Technicians. The program finishes out three weeks of training with an assignment at a Vestas wind project. As Jones said, in earlier times “you just came in off the street, they gave you an electrical test and an aptitude test. If you could pass both of those, they could find a place for you. Now there’s more to it.”
In New Mexico, three institutions teach future wind technicians, but only Mesalands has a dedicated wind program and turbine, graduating roughly 20 students each semester, Andy Swapp told me. Unlike TSTC, Mesalands doesn’t give students their GWO certifications, though climbing towers is part of the curriculum.
While TSTC’s Jones doesn’t have much of a recruiting operation, Swapp runs a full-court press, including online ads and trips to high schools for “kid wind” competitions to design turbines, on top of word-of-mouth recruiting from previous students.
“The hardest part of this job is filling the classroom,” Swapp said. “I think if we could fill our classroom every semester, we could meet the need.”
In Lea County, 180 miles away from Mesalands, wind training is scarce, said Jennifer Grassham, president and CEO of the local economic development corporation. She thinks it has to do with demand — too few projects nearby to spur the need for trained technicians.
Meanwhile, a well-coordinated economic engine brings people into oil and gas in Hobbs, the county’s largest city, with 5,808 residents employed in the industry. New recruits can easily find training through company-sponsored programs (the industry norm, according to Grassham); New Mexico Junior College, located conveniently in town; or even the city’s technical high school, which offers “very specific oil and gas training,” Grassham explained.
Individuals interested in entering the field can also easily get a certification ahead of time. One method is to take an online course for around $600 from the University of Texas’s Petroleum Extension, which includes about a week’s worth of work.
“To get a job on a rig is fairly easy,” John Scannell, PETEX’s operations manager, said. “The companies that hire for those jobs, they don’t expect a lot of existing knowledge, so I know a lot of the drilling companies will hire people if they just take our basic overview of working on a rig.”
Lea County’s economic development council is thinking about wind and solar development, Grassham noted, but conversations about the workforce haven’t begun. If more wind farms like SunZia pop up offering hundreds of jobs, that might spur those conversations. “I think we still respond to supply and demand,” she said. “If there was a density around the demand for wind-related job training, the junior college would stand up a wind program almost overnight.”
Even when the demand arrives, workers may still face challenges. Some wind industry workers I spoke to for this story told me they struggled to secure raises, even with years of training and experience. “We really have to take a step back and think about how this transition is going to happen in a way that produces a more resilient economy,” Delp said. “If we build this transition on the backs of workers, we are going to be dealing with the political and economic consequences of that for decades.”
But presuming the industry can train enough people and keep them happy, every person I spoke to emphasized the same thing: Wind jobs are good jobs, especially if working at heights is a thrill and not a deterrent.
Jackiewicz — skeptical that the labor force as a whole will meet the moment at the pace required — is still a booster. “This is the only place I know that where someone without a high school education can earn six digits a year,” he said. “People I meet, I encourage them — ‘hey if you’ve got common sense, you can make a lot of money.’ I would recommend it as long as it’s here. Clean money, dirty hands.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Members of the nation’s largest grid couldn’t agree on a recommendation for how to deal with the surge of incoming demand.
The members of PJM Interconnection, the country’s largest electricity market, held an advisory vote Wednesday to help decide how the grid operator should handle the tidal wave of incoming demand from data centers. Twelve proposals were put forward by data center companies, transmission companies, power companies, utilities, state legislators, advocates, PJM’s market monitor, and PJM itself.
None of them passed.
“There was no winner here,” PJM chief executive Manu Asthana told the meeting following the announcement of the vote tallies. There was, however, “a lot of information in these votes,” he added. “We’re going to study them closely.”
The PJM board was always going to make the final decision on what it would submit to federal regulators, and will try to get something to the Federal Energy Regulatory Commission by the end of the year, Asthana said — just before he plans to step down as CEO.
“PJM opened this conversation about the integration of large loads and greatly appreciates our stakeholders for their contributions to this effort. The stakeholder process produced many thoughtful proposals, some of which were introduced late in the process and require additional development,” a PJM spokesperson said in a statement. “This vote is advisory to PJM’s independent Board. The Board can and does expect to act on large load additions to the system and will make its decision known in the next few weeks.”
The surge in data center development — actual and planned — has thrown the 13-state PJM Interconnection into a crisis, with utility bills rising across the network due to the billions of dollars in payments required to cover the additional costs.
Those rising bills have led to cries of frustration from across the PJM member states — and from inside the house.
“The current supply of capacity in PJM is not adequate to meet the demand from large data center loads and will not be adequate in the foreseeable future,” PJM’s independent market monitor wrote in a memo earlier this month. “Customers are already bearing billions of dollars in higher costs as a direct result of existing and forecast data center load,” it said in a quarterly report released just a few days letter, pegging the added charges to ensure that generators will be available in times of grid stress due to data center development at over $16 billion.
PJM’s initial proposal to deal with the data center swell would have created a category for new large sources of demand on the system to interconnect without the backing of capacity; in return, they’d agree to have their power supply curtailed when demand got too high. The proposal provoked outrage from just about everyone involved in PJM, including data center developers and analysts who were open to flexibility in general, who said that the grid operator was overstepping its responsibilities.
PJM’s subsequent proposal would allow for voluntary participation in a curtailment program, but was lambasted by environmental groups like Evergreen Collaborative for not having “any semblance of ambition.” PJM’s own market monitor said that voluntary schemes to curtail power “are not equivalent to new generation,” and that instead data centers should “be required to bring their own new generation” — essentially to match their own demand with new supply.
A coalition of environmental groups, including the Natural Resources Defence Council and state legislators in PJM, said in their proposal that data centers should be required to bring their own capacity — crucially counting demand response (being paid to curtail power) as a source of capacity.
“The growth of data centers is colliding with the reality of the power grid,” Tom Rutigliano, who works on grid issues for the Natural Resources Defense Council, said in a statement. “PJM members weren’t able to see past their commercial interests and solve a critical reliability threat. Now the board will need to stand up and make some hard decisions.”
Those decisions will come without any consensus from members about what to do next.
“Just because none of these passed doesn’t mean that the board will not act,” David Mills, the chairman of PJM’s board of managers, said at the conclusion of the meeting. “We will make our best efforts to put something together that will address the issues.”
California energy companies are asking for permission to take in more revenue. Consumer advocates are having none of it.
There’s a seemingly obvious solution to expensive electricity bills: Cut utility profits.
Investor-owned utilities have to deliver profits to their shareholders to be able to raise capital for grid projects. That profit comes in the form of a markup you and I pay on our electricity bills. State regulators decide how much that mark-up is. What if they made it lower?
A growing body of evidence suggests they should at least consider it. In principle, the rate of return on equity, or ROE, that regulators allow utilities to charge should reflect the risk that equity investors are taking by putting their money in those utilities, but that relationship seems to have gotten out of whack. Among the first to draw attention to the issue was a 2019 paper by Carnegie Mellon researchers which found that since the 1990s, the average “risk premium” exhibited by utility ROEs as compared to relatively risk-free U.S. Treasury bonds has grown from 3% to nearly 8%.
“An error or bias of merely one percentage point in the allowed return would imply tens of billions of dollars in additional cost for ratepayers in the form of higher retail power prices,” the authors wrote.
Subsequent research reproduced and built on those findings, showing that a generous ROE creates a perverse incentive for utilities to increase their capital investments, leading to excess costs for consumers of $3 billion to $11 billion per year. Now, the ex-chief economist of a major U.S. utility company, Mark Ellis, is putting his own analysis out there, arguing that unreasonably high ROEs are costing U.S. energy customers $50 billion per year, or over $300 per household.
Not only does this hurt consumers, it also makes the energy transition more expensive and less politically palatable.
That’s what environmental and consumer advocates are worried about in California, where the Public Utility Commission is currently considering requests by the state’s four largest energy companies to raise each of their ROE. Utilities in the state have reported record profits amid a worsening affordability crisis. On Friday, the commission signaled that it would instead lower the companies’ ROE — although not nearly as much as advocates have recommended. A final decision is expected in December.
“It’s a joke,” Ellis, the former utility executive, told me of the commission proceedings. “If you read the proposed decision, they don’t address any of the facts or evidence in the case at all.” His own analysis, which he submitted to the California commission on behalf of the Sierra Club, proposes that an average ROE of 6%, down from about 10%, would be justified and has the potential to save California energy customers more than $6 billion per year.
Utilities, of course, disagree, and have brought their own analysis and warnings about the risks of lowering their ROE. Regulators are left to sort through it all to figure out the magic number — one large enough to appeal to investors, but not so large as to throw ratepayers under the bus.
How does the ROE work its way into your bill? Let’s say your local utility, The Electric Company, has a regulated return on equity of 10%, and it plans to spend $100 million to build new substations. Utilities typically finance these kinds of capital projects with a mix of debt (loans they will have to pay interest on) and equity (shares sold to investors). Then they recover that money from ratepayers over the course of decades. If The Electric Company raises half of the capital, or $50 million, via equity, an ROE of 10% means it will be able to charge ratepayers $5 million on top of the cost of the project. That additional $5 million is factored into the per-killowatt-hour rates that customers pay. The profit can then be reinvested into future projects, issued to shareholders as dividends, paid out to executives as bonuses — the list goes on.
The energy research group RMI, which agrees that the average utility ROE is much too high, estimates the surcharge currently makes up between 15% and 20%% of the average customer’s utility bill. “Setting ROEs at the right level is necessary to bring forward a rapid, just, and equitable transition,” RMI wrote.
Utilities, however, say the “right level” is likely higher, not lower. They warn that in reality, lowering their ROE would trigger a cascade of negative effects — credit downgrades, higher borrowing costs, lower stock prices, investors taking their money elsewhere — that would push energy rates up, not down. These effects would also make it more difficult for utilities to invest in projects to clean up and expand the electric grid.
Timothy Winter, the portfolio manager of a utility-focused fund at the investment firm Gabelli, told me this “virtuous cycle” runs in both directions. Higher ROEs lead to a lower cost of capital, which leads to more investment, better reliability, and lower rates, he argued. Winter said that if California regulators reduced utility ROEs to 6%, investors would flee the state.
Between growing wildfire risk and the bankruptcy of California’s largest utility, PG&E, California energy providers are too exposed to warrant such low returns, he said. As a comparison, he noted that U.S. Treasury bonds, which are generally viewed as risk-free, yield about 4%. “If it’s a 6% return with an equity risk, they’re not going to do it,” he said of investors.
I probed Winter a bit more on this. Is that really true given that utilities are still, in many ways, the opposite of risky investments? They have captive customers, stable income, and are seeing skyrocketing growth in demand for their product.
This caused him to spiral down into an investor’s worst nightmare scenario. “Yes, there is a risk,” he said. “If a regulator is willing to give a 6% return and they used to give 11%, how do I know they’re not going to decide, okay, rates keep going up, next rate case it’s going to be 4%?” After that, he said, how can investors be sure the government won’t end up taking over the utility altogether?
Travis Miller, a senior equity analyst at Morningstar, was more measured. He hesitated to tell me whether a 6% ROE would hurt utilities’ ability to raise capital. “What usually happens” when regulators lower the ROE, he said, “is the utilities just decide not to invest very much, so then they don’t have to raise capital.” He would expect the California utilities to “invest to maintain reliability and that’s about it,” meaning that “a lot of new data center build that is planned in California would have to go elsewhere.”
Return on equity also isn’t the only thing investors look at, Miller added. They consider the overall regulatory environment. Is it predictable? Is it transparent? He said there have been cases where regulators cut a utility’s ROE but the overall regulatory environment remained strong, and other instances where the cut to ROE was “another sign of a deteriorating relationship” — a phrase that brings to mind Winter’s panic about government takeovers. (I should note, advocates for public takeovers of utilities cite this whole dynamic around the need to woo investors and the perverse incentives it creates as a key justification for their cause. Publicly-owned utilities — which serve about 1 in 7 electricity customers in the U.S., including in large cities like Sacramento, Los Angeles, and Seattle — don’t charge an ROE.)
When I spoke to Ellis about his proposal, I fired off all of the utility arguments I could think of. Won’t utilities stop building stuff and making the investments we need them to make if they can’t earn as much? “They have a legal obligation to continue to invest,” he said. But will they be able to raise equity? They don’t necessarily need to raise new equity, he responded, suggesting that utilities could reinvest more of their profits rather than distributing the money as dividends. This is not how utilities traditionally operate, he admitted, but it’s an option.
Prior to taking up the consumer cause, Ellis spent 15 years in leadership and executive roles at Sempra Energy, the parent company of San Diego Gas and Electric and SoCal Gas — two of the companies that petitioned for higher ROE. “I know how they think about this issue,” he told me, asserting that the arguments the companies make to regulators do not match how they think about ROE internally.
During our interview, Ellis described the current state of utility regulation of ROE in California as “reprehensible,” “egregious,” “heartbreaking,” and “a huge injustice.”
In the analysis he submitted to the utility commission, Ellis not only makes the case that the average U.S. utility’s ROE is much higher than is necessary to attract capital, but also that the potential impacts to consumers of lowering it — i.e. the potential to hurt a utility’s credit rating and increase its cost of debt — would be outweighed by customer savings.
He argues that to justify their requests for higher ROEs, the utilities use forecasts from biased sources, cherry-pick and manipulate data, and make economically impossible assumptions, like that earnings will grow faster than GDP.
Stephen Jarvis, an assistant professor at the London School of Economics who has conducted research on ROE rates, has reached similar conclusions about them being excessively high. Nonetheless, he told me he sympathized with the challenge regulators face. He said there was no “right” answer for how to calculate the appropriate ROE. “Depending on the assumptions that you use, you can come up with quite different numbers for what a fair rate of return should be,” he said.
The sentiment echoes the preliminary decision the California Public Utilities Commission issued last week, when it observed that all of the proposals submitted in the proceeding were “dependent on subjective inputs and assumptions.”
Ellis said the decision contained a “smoking gun,” however, proving that the commission didn’t really do its job. Changes in ROE are supposed to reflect changes to a company’s risk profile, he said. The risk profile for Southern California Edison, which is facing lawsuits related to the Eaton Fire and already paying out hundreds of millions of dollars to survivors, has certainly changed in a different way than its peers. Regardless, the commission made the exact same recommendation for each utility to reduce ROE by 0.35%. “The Commission clearly is not looking at the evidence.”
There is likely some truth to that. “It’s more art than science,” Cliff Rechtschaffen, who served for six years on the California Public Utilities Commission, told me when I asked how the people in those seats attempt to calibrate ROE. He acknowledged there was a self-reinforcing element to the process — regulators look at where investors might go if the rate of return is too low, and use that to determine what the rate should be. “But the rates of return that are set in other jurisdictions are, in turn, influenced by the national utility market, which includes your own utility market,” he said.
Similarly, regulators rely on market analysts, investment advisors, investment bankers, and so on, who have an inherent interest in building up the market and ensuring healthy rates of return, he said. “That makes it harder to discern and do true price discovery.”
Rechtschaffen said he was glad that environmental and consumer advocates were bringing greater scrutiny to ROE, adding that it was the “right time” to do so. “Particularly in this environment where utilities have forecast that they’re going to be spending tens of billions of dollars on capital upgrades, do we need the same rates of return that we’ve seen?”
On ravenous data centers, treasured aluminum trash, and the drilling slump
Current conditions: The West Coast’s parade of storms continues with downpours along the California shoreline, threatening mudslides • Up to 10 inches of rain is headed for the Ozarks • Temperatures climbed beyond 50 degrees Fahrenheit in Greenland this week before beginning a downward slide.
The Department of Energy’s Loan Programs Office just announced a $1 billion loan to finance Microsoft’s restart of the functional Unit 1 reactor at the Three Mile Island nuclear plant. The funding will go to Constellation, the station’s owner, and cover the majority of the estimated $1.6 billion restart cost. If successful, it’ll likely be the nation’s second-ever reactor restart, assuming Holtec International’s revival of the Palisades nuclear plant goes as planned in the next few months. While the Trump administration has rebranded several loans brokered under its predecessor, this marks the first completely new deal sanctioned by the Trump-era LPO, a sign of Energy Secretary Chris Wright’s recent pledge to focus funding on nuclear projects. It’s also the first-ever LPO loan to reach conditional commitment and financial close on the same day.
“Constellation’s restart of a nuclear power plant in Pennsylvania will provide affordable, reliable, and secure energy to Americans across the Mid-Atlantic region,” Wright said in a statement. “It will also help ensure America has the energy it needs to grow its domestic manufacturing base and win the AI race.” Constellation’s stock soared in after-hours trading in response to the news. Holtec’s historic first restart in Michigan got the green light from regulators to come back online in July, as I reported in this newsletter at the time. But already another company is lining up to turn its defunct reactor back on: As I reported here in August, utility giant NextEra wants to revive its Duane Arnold nuclear station in Iowa. The push to restart older reactors reflects a growing need for electricity long before new reactors can come online. Meanwhile, next-generation reactors are plowing ahead. The nuclear startup Valar Atomics claimed this week to achieve criticality long before the July 4 deadline set in an Energy Department competition.
Over the next five years, American demand for electricity is set to grow by the equivalent of 15 times the peak demand of the entirety of New York City. That’s according to the latest annual forecast from the consultancy Grid Strategies. The growth — roughly sixfold what was forecast in 2022 — comes overwhelmingly from data centers, as shown by which regions expect the largest growth:

“The fact that these facilities are city-sized is a huge deal,” John Wilson, Grid Strategies’ vice president and the report’s lead author, told Canary Media. “That has huge implications if these facilities get canceled, or they get built and don’t have long service lives.” Mounting political opposition to data centers could make deals less certain. A Heatmap Pro survey in September found just 44% of Americans would welcome a data center opening nearby. And last week I wrote about how progressives in Congress are rallying around a crackdown on data centers.
Sign up to receive Heatmap AM in your inbox every morning:
The contrast couldn’t be starker. In Washington, President Donald Trump rolled out the red carpet for Saudi Crown Prince Mohammed bin Salman, offering an opulent welcome to the White House and lashing out at reporters who asked about September 11 or the killing of journalist Jamal Khashoggi. In Belém, Brazil, meanwhile, former Vice President Al Gore tore into the team of delegates Saudi Arabia sent to the United Nations climate summit for “flexing its muscles” in negotiations about how to shift away from oil and gas. “Saudi Arabia appears to be determined to veto the effort to solve the climate crisis, only to protect their lavish income from selling the fossil fuels that are the principal cause of the climate crisis,” Gore told the Financial Times. “I hope that the rest of the world will stand up to this obscene greed and recklessness on the part of the kingdom.”
But the Trump meeting could yield some progress on clean energy. Among the top issues the White House listed in its read-out of the summit was the push to export American atomic energy technology to Saudi Arabia as the country looks to follow the United Arab Emirates in embracing nuclear power.
Facing growing needs for domestic sources of metal for the energy transition, the European Union is seeing its trash as treasure. On Tuesday, the European Commission proposed restricting exports of aluminum scrap amid what The Wall Street Journal called “concerns that rising outflows of the resource could leave Europe short of a critical input for its decarbonization efforts.” Speaking at the European Aluminum Summit, EU trade chief Maros Sefcovic referred to the exports as “leakage.” The proposal wouldn’t fully block sales of aluminum scrap overseas, but would adopt a “balanced” measure that ensures sufficient supplies and competitive prices in the single market. “Scrap is a strategic commodity given its important contribution to circularity and decarbonization, as production from secondary materials releases less emissions and is less energy intensive, as well as to our strategic autonomy,” Sefcovic said. The measure is set to be adopted by spring 2026.
In the U.S., the Biden administration made what Heatmap’s Matthew Zeitlin last year called a “big bet” on aluminum. The Trump administration slapped steep new tariffs on imported aluminum, though as our colleague Katie Brigham wrote, “aluminum producers rely on imports of these same materials to build their own plants. Tariffs on these vital construction materials — plus exorbitant levies on all goods from China — will make building new production facilities significantly costlier.”

The average number of active rigs per month that are drilling for oil and natural gas in the continental United States fell steadily over the past year. As of last month, the U.S. had 517 rigs in operation, down from a peak of 750 in the end of 2022. The number of oil-pumping rigs dropped 33% to 397 rigs, while gas-pumping rigs slid 23% to 120 rigs over the same period from December 2022 to October 2025. While the Energy Information Administration said the declining rig count “reflects operators’ responses to declining crude oil and natural gas prices,” the federal research agency said it’s also “improvement in drilling efficiencies,” meaning companies are getting more fuel out of existing wells.
It’s been a pattern in recent research on sustainability. Scientists look at methods that Indigenous groups have maintained as traditions only to find that approaches that have sustained throughout centuries or millennia are finding new value now. A study by the University of Hawaiʻi at Mānoa’s Hawaiʻi Institute of Marine Biology found that Native Hawaiian aquaculture systems — essentially fish ponds known as loko iʻa — effectively shielded fish populations from the negative impacts of climate change, demonstrating resilience and bolstering local food security. “Our study is one of the first in academic literature to compare the temperatures between loko iʻa and the surrounding bay and how these temperature differences may be reflected in potential fish productivity,” lead author Annie Innes-Gold, a recent PhD graduate from the university, said in a press release. “We found that although rising water temperature may lead to declines in fish populations, loko iʻa fish populations were more resilient.”