You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Oscar-winner and El Capitan free solo-er talks to Heatmap about solar panels, fatherhood, and his new docuseries, Arctic Ascent.

In 2017, rock climber Alex Honnold went on Jimmy Kimmel Live! to promote Free Solo, the then-new documentary about his unassisted climb of Yosemite’s El Capitan. “Is there anything bigger than that?” Kimmel prompted as a closing question.
“I mean, there are technically some bigger walls in the world,” Honnold said. “But they’re in very remote places — like Greenland.”
Five years and an Oscar later, Honnold was scrambling off a boat at the base of Ingmikortilaq, a crumbly sea cliff that towers nearly 1,000 feet higher than El Cap over an iceberg-ridden fjord in eastern Greenland. His intended first ascent was the culmination of a six-week adventure across ice fields and glaciers.
This time, Honnold wasn’t alone. The Greenland expedition included two other legendary climbers, Hazel Findlay and Mikey Schaefer, as well as Aldo Kane, who provided safety and technical support; Adam Kjeldsen, a Greenlandic guide; and perhaps most surprisingly, Heïdi Sevestre, a French glaciologist who helped set up or run 16 different studies to collect data for scientists around the world.
The team’s adventure is captured in Arctic Ascent with Alex Honnold, a three-part docuseries that premieres on Hulu and Disney+ on February 5. Ahead of its release, I spoke separately with Honnold and Sevestre about the expedition, the importance of climate science, and their respective climbs. (While Sevestre, previously a non-climber, didn’t attempt Ingmikortilaq, she did scale a 1,500-foot rock face known as the Pool Wall while drilling rock cores for samples.) Our conversations have been lightly edited and condensed for clarity.
Unlike a lot of other outdoor sports like mountaineering or skiing or even surfing, rock climbing doesn’t seem as obviously imperiled by climate change. How did this become the cause you wanted to devote your time and money to?
Oh, I think climbing is more imperiled by climate change than most other sports. I mean, you’re right that maybe it’s not as impactful as to skiing, but it’s way more impactful than almost every other sport.
You’re still in the mountains. Wildfire smoke every summer — that’s now a thing that just didn’t exist when I was growing up climbing. Even if you’re just rock climbing, you’re always approaching in the mountains. Nowadays, most couloirs [chutes between rocks that might typically fill with snow in the winter] have melted out. Stable snow fields that have existed for generations are now melted out. Piles of teetering rubble are falling down mountainsides, and also a lot of routes are just less safe. The mountainsides themselves are collapsing, like the Aiguille du Midi gondola in Chamonix. Which, actually — one of the things we were installing in Greenland were temperature sensors on one of the cliffs, related to studying how rocks thaw out, what happens when permafrost melts. I would say that climate change is still incredibly relevant for us.
Your way into climate was through your climbing, then?
A big part of my environmental awareness in general is because of the experiences I’ve had outdoors as a climber. But long before [the Greenland expedition], I started a foundation in 2012 where I’ve been supporting community solar projects around the world and caring about the transition to renewables. I’ve cared about climate change forever. I think this was just the first opportunity to do it on mainstream television.
I saw that Arctic Ascent purchased carbon credits to compensate for production emissions. I was hoping you could talk about that decision, and how else you might have minimized your impact on the expedition, since I don’t think people are aware of how energy intensive film and TV productions can be.
In this case, other than the obvious expense of all of our flights getting to Greenland, we had a relatively low carbon footprint because we were camping the whole time. I think you’re right that a lot of television is kind of insane when you have all the RVs and everyone’s in their own thing and there’s hair and makeup and it’s just crazy with, like, a million cameras. In this case, it was basically a bunch of people camping on a glacier for six weeks, so it’s not quite the same as a Hollywood set.
But yeah, I think the idea to purchase offsets was the obvious bare minimum for a project like this. If you’re going to be doing a whole story around sea level rise, you have to do something.
The Honnold Foundation focuses on bringing solar panels to vulnerable communities, but these are fairly small projects compared to the expansive solar farms we might more traditionally think of. Why did you choose to focus your time on something that might seem, at least on paper, to be of a smaller scale than, say, electrifying the grid?
It’s a totally fair question. In 2012, it wasn’t totally clear that the world was transitioning to renewables at all. It seemed like it was inevitable, but you’re never really sure — you know, back then people were into hydrogen and you’re like, “Oh, maybe we’re going to have hydrogen cars, or maybe battery electric really takes off,” blah, blah, blah. Anyway, now it seems totally clear that the world is transitioning to renewables. Within some timeframe, like 20 to 50 years, the world will be 100% renewable.
The thing is, we currently live in a world where something like a billion people don’t have access to power, and transitioning to renewables will still leave us in a world where a billion people don’t have access to power. [Editor’s note: The number of people living without electricity today is actually closer to 760 million.] As the system changes, there are so many people who are left behind. What the Honnold Foundation tries to do is find that sweet spot in helping with the transition, helping the people who are being left behind.
Part of that is just by necessity — I’m a professional rock climber, I’m not a tech billionaire. So the small-scale grants just make more sense to some extent, but they also have the biggest impact on human lives because when you do these small-scale projects, you can fundamentally change the way people live. That’s a huge impact.
I live in Las Vegas, and you see huge solar farms around the desert. It’s great; the grid is going 100% renewable. I’m into that. But realistically, the only difference it makes in most people’s lives is maybe a small change in their utility rate. Really, the people that benefit are the utility shareholders — it’s some Warren Buffett-owned utility in my case, NV Energy. That really isn’t that inspiring. This is my long rant to say that the Honnold Foundation is trying to help the humans who need it the most.
Did you get a chance to use solar panels on the Greenland expedition?
On this trip, no, because they were running a generator for production and it was charging, like, 50 batteries.
It’s funny because we did an expedition in Antarctica where we made a little climbing film as well. And on that trip, they planned to take a generator and then somebody just forgot the fuel. So we got there and we were like, “Oh, no,” and we wound up doing the whole trip off solar and it totally worked.
This was your first expedition since becoming a father. You’ve worked on the climate cause for a long time now, but I’m curious if your perspective has changed at all since your daughter June joined your family — and I know you have another daughter on the way!
Yeah, soon! No, I don’t think my perspective has changed too much. I’ve always cared about these kinds of issues. The bigger change is in the way that I spend my time. Having a family forces me to be a little bit tighter about the choices that I’m making, what expeditions I choose to go on. That makes a trip like this even more worthwhile, where you get to do great climbing and there’s a real purpose behind it, and you get to share important knowledge about things that matter.
Can you tell me a little more about the decision to bring Heïdi on board? I heard her version of the story earlier this week but I’m curious about how you found her and roped her in.
Isn’t she so amazing?
She was delightful!
That’s the thing with Heïdi. Because when you spend time with her, she just makes you care about about ice. And I don’t even like ice. It’s not my thing; I like rocks. But she made me much more knowledgeable and much more caring about that type of world.
Do you consider yourself an optimist when it comes to climate change?
I think so, which is weird because I’m optimistic despite all the data to the contrary. I understand the predictions, but there’s so much to gain. So far it’s been 20 years that I’ve been reading environmental nonfiction and we haven’t really chosen to make anything of this opportunity, but we still have this incredible opportunity to build a better world to live in, a cleaner world. We can still choose that at any point. And I just keep thinking that at some point, we’re going to choose it. You can’t keep ignoring the obvious thing forever.
How did you get involved in the Arctic Ascent expedition?
This was an absolute dream come true for me — I felt extremely lucky to get a call from the team. It is extremely challenging to go to that one remote location, one of the least studied places on Earth. But Alex, as you know, is a firm believer in the scientific work. The planets really aligned. It took about a year prior to the expedition to design the work we could do with boots on the ground.
I wanted to know what it was like to put together scientific objectives for an expedition like this. It’s a little bit unconventional because there’s a film crew and there was climbing involved.
I think it was extremely brave and extremely daring of the entire team to have the willingness to invite the scientists on board. Because not only did we have the best climbers in the world climbing in a very challenging and hostile environment, we’re also filming a series of documentaries and we have to do some of the very best possible science. So it’s not that easy! But what we did is, we took it step by step. We contacted all the universities and labs and institutions interested in data from this part of the world — and also interested in training me on how to collect this data. Because I really felt — it’s what I was thinking the whole time — I really felt like I was an astronaut on the ISS. I was the only one, and I had to do the best possible work.
We ended up with 16 different protocols to do on this expedition, so it was really major. And, you know, we worked with NASA, we worked with research institutes in Denmark, the University of Buffalo, and the University of Kansas, for example. So it was challenging but a dream come true to be trusted by the scientists.
Your first big polar expedition was actually to Greenland, back in 2011. Had you been back to the island between that research trip and this one?
I had spent a tiny bit of time — not so far in the field as East Greenland, but around the coastlines. But what I was doing there was mostly science communication with people who wanted to learn about the impacts of climate change on the Greenland ice sheets. So I hadn’t been on a big research expedition to Greenland since 2011. And the changes were absolutely massive.
That was going to be my question!
The Arctic is one of the fastest-warming places on Earth. Everything that’s taking place in Greenland is impacting the rest of the world, so I felt that we had a duty and a mission — on top of climbing these incredible monoliths, we actually had to bring something back to society.
In the series, you talk about how remote and understudied East Greenland is by climate scientists. But during the expedition, you were being assisted by support helicopters and by boats. So why aren’t expeditions like this one happening all the time? Is it an issue of funding or a lack of scientific interest in this particular region?
It’s crazy to think of how little data we have from the ground [in East Greenland]. We have satellites — we have as many satellites as we want. But it is very tricky to get there. What you have to understand about this place is that for 10 months of the year, there is sea ice blocking access to this field. Ten months of the year! So the rest of the year — yes, we can access by plane, we can access by boat, but it’s very expensive.
What was great about this project is that we had in mind, “How can we lower our carbon footprint?” This is why, for example, we worked with fishermen who had boats from a nearby village at the entrance of the field. It was very important for us to use local means of transportation. Of course, we had to use helicopters every now and then, because there was no other way. But it’s remote, it’s expensive, and on top of everything, it is extremely hostile.
Oh my gosh, the bashing you get when you go there! This is something that we really wanted to show in the series — how powerful nature can be. And climate change is accelerating and making these changes even more violent. So I think it’s important to show that when nature starts to be a bit destabilized, it can get very angry.
There was a paper in Nature that came out earlier this month that said nearly every glacier in Greenland has thinned or retreated over the past few decades. In the series, there’s a bit of good news, which is that the Daugaard-Jensen Glacier is a little bit more stable than you were anticipating. Do you have any insight into why that might be?
What’s so great is, it keeps part of the mystery! I like that we still don’t totally understand what’s taking place.
The scientists we’ve been working with have told us — this is a bit technical — but it has to do with the shape of the bedrock. It seems that the glacier is resting on a little ridge that might be holding everything together. This might be the reason why the glacier is still stable; also, this part of Greenland still receives a lot of snow.
But we’ve seen some cracks in this perfect picture. You know, the NASA float [that we launched on the expedition] has told us that the temperature of the water in the fjords is increasing. So it’s not all perfect. The environment around it is definitely changing, but it seems that it has some advantages.
Were there any findings from the expedition that you are particularly excited about?
All of them! But science takes a very long time, so at the moment, we’re still waiting on a lot of the results from these different protocols. But what I want to share is something that is very simple: Greenland holds a lot of ice, and if we lose the ice, it means 6 to 7 meters of sea-level rise. As you saw in the paper that was published by Nature, at the moment, Greenland is losing 30 million tons of ice per hour. What is crucial to understand is that every action we conduct back home to reduce our carbon footprints and to preserve our climate helps Greenland and helps our collective future. All this data will help us to prepare for the things to come.
Last question: Have you taken up rock climbing?
I’ll be honest: no. I think I’m a bit traumatized in a good way. I think I needed a minute to recover. But I really want to start climbing again — now, with the launch of this series, I know that it’ll be my mission for this year. Otherwise, I think Alex and Hazel will never forgive me.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
With policy chaos and disappearing subsidies in the U.S., suddenly the continent is looking like a great place to build.
Europe has long outpaced the U.S. in setting ambitious climate targets. Since the late 2000s, EU member states have enacted both a continent-wide carbon pricing scheme as well as legally binding renewable energy goals — measures that have grown increasingly ambitious over time and now extend across most sectors of the economy.
So of course domestic climate tech companies facing funding and regulatory struggles are now looking to the EU to deploy some of their first projects. “This is about money,” Po Bronson, a managing director at the deep tech venture firm SOSV told me. “This is about lifelines. It’s about where you can build.” Last year, Bronson launched a new Ireland-based fund to support advanced biomanufacturing and decarbonization startups open to co-locating in the country as they scale into the European market. Thus far, the fund has invested in companies working to make emissions-free fertilizers, sustainable aviation fuel, and biofuel for heavy industry.
It’s still rare to launch a fund abroad, and yet a growing number of U.S. companies and investors are turning to Europe to pilot new technology and validate their concepts before scaling up in more capital-constrained domestic markets.
Europe’s emissions trading scheme — and the comparably stable policy environment that makes investors confident it will last — gives emergent climate tech a greater chance at being cost competitive with fossil fuels. For Bronson, this made building a climate tech portfolio somewhere in Europe somewhat of a no-brainer. “In Europe, the regulations were essentially 10 years ahead of where we wanted the Americas and the Asias to be,” Bronson told me. “There were stricter regulations with faster deadlines. And they meant it.”
Of the choice to locate in Ireland, SOSV is in many ways following a model piloted by tech giants Google, Microsoft, Apple, and Meta, all of which established an early presence in the country as a gateway to the broader European market. Given Ireland’s English-speaking population, low corporate tax rate, business-friendly regulations, and easy direct flights to the continent, it’s a sensible choice — though as Bronson acknowledged, not a move that a company successfully fundraising in the U.S. would make.
It can certainly be tricky to manage projects and teams across oceans, and U.S. founders often struggle to find overseas talent with the level of technical expertise and startup experience they’re accustomed to at home. But for the many startups struggling with the fundraising grind, pivoting to Europe can offer a pathway for survival.
It doesn’t hurt that natural gas — the chief rival for many clean energy technologies — is quite a bit more expensive in Europe, especially since Russia’s invasion of Ukraine in 2022. “A lot of our commercial focus today is in Europe because the policy framework is there in Europe, and the underlying economics of energy are very different there,” Raffi Garabedian, CEO of Electric Hydrogen, told me. The company builds electrolyzers that produce green hydrogen, a clean fuel that can replace natural gas in applications ranging from heavy industry to long-haul transport.
But because gas is so cheap in the U.S., the economics of the once-hyped “hydrogen economy” have gotten challenging as policy incentives have disappeared. With natural gas in Texas hovering around $3 per thousand cubic feet, clean hydrogen just can’t compete. But “you go to Spain, where renewable power prices are comparable to what they are in Texas, and yet natural gas is eight bucks — because it’s LNG and imported by pipeline — it’s a very different context,” Garabedian explained.
Two years ago, the EU adopted REDIII — the third revision of its Renewable Energy Directive — which raises the bloc’s binding renewable share target to 42.5% by 2030 and broadens its scope to cover more sectors, including emissions from industrial processes and buildings. It also sets new rules for hydrogen, stipulating that by 2030, at least 42% of the hydrogen used for industrial processes such as steel or chemical production must be green — that is, produced using renewable electricity — increasing to 60% by 2035.
Member countries are now working to transpose these continent-wide regulations into national law, a process Garabedian expects to be finalized by the end of this year or early next. Then, he told me, companies will aim to scale up their projects to ensure that they’re operational by the 2030 deadline. Considering construction timelines, that “brings you to next year or the year after for when we’re going to see offtakes signed at much larger volumes,” Garabedian explained. Most European green hydrogen projects are aiming to help decarbonize petroleum, petrochemical, and biofuel refining, of all things, by replacing hydrogen produced via natural gas.
But that timeline is certainly not a given. Despite its many incentives, Europe has not been immune to the rash of global hydrogen project cancellations driven by high costs and lower than expected demand. As of now, while there are plenty of clean hydrogen projects in the works, only a very small percent have secured binding offtake agreements, and many experts disagree with Garabedian’s view that such agreements are either practical or imminent. Either way, the next few years will be highly determinative.
The thermal battery company Rondo Energy is also looking to the continent for early deployment opportunities, the startup’s Chief Innovation Officer John O’Donnell told me, though it started off close to home. Just a few weeks ago, Rondo turned on its first major system at an oil field in Central California, where it replaced a natural gas-powered boiler with a battery that charges from an off-grid solar array and discharges heat directly to the facility.
Much of the company’s current project pipeline, however, is in Europe, where it’s planning to install its batteries at a chemical plant in Germany, an industrial park in Denmark, and a brewery in Portugal. One reason these countries are attractive is that their utilities and regulators have made it easier for Rondo’s system to secure electricity at wholesale prices, thus allowing the company to take advantage of off-peak renewable energy rates to charge when energy is cheapest. U.S. regulations don’t readily allow for that.
“Every single project there, we’re delivering energy at a lower cost,” O’Donnell told me. He too cited the high price of natural gas in Europe as a key competitive advantage, pointing to the crippling effect energy prices have had on the German chemical industry in particular. “There’s a slow motion apocalypse because of energy supply that’s underway,” he said.
Europe has certainly proven to be a more welcoming and productive policy environment than the U.S., particularly since May, when the Trump administration cut billions of dollars in grants for industrial decarbonization projects — including two that were supposed to incorporate Rondo’s tech. One $75 million grant was for the beverage company Diageo, which planned to install heat batteries to decarbonize its operations in Illinois and Kentucky. Another $375 million grant was for the chemicals company Eastman, which wanted to use Rondo’s batteries at a plastics recycling plant in Texas.
While nobody knew exactly what programs the Trump administration would target, John Tough, co-founder at the software-focused venture firm Energize Capital, told me he’s long understood what a second Trump presidency would mean for the sector. Even before election night, Tough noticed U.S. climate investors clamming up, and was already working to raise a $430 million fund largely backed by European limited partners. So while 90% of the capital in the firm’s first fund came from the U.S., just 40% of the capital in this latest fund does.
“The European groups — the pension funds, sovereign wealth funds, the governments — the conviction they have is so high in climate solutions that our branding message just landed better there,” Tough told me. He estimates that about a quarter to a third of the firm’s portfolio companies are based in Europe, with many generating a significant portion of their revenue from the European market.
But that doesn’t mean it was easy for Energize to convince European LPs to throw their weight behind this latest fund. Since the American market often sets the tone for the global investment atmosphere, there was understandable concern among potential participants about the performance of all climate-focused companies, Tough explained.
Ultimately however, he convinced them that “the data we’re seeing on the ground is not consistent with the rhetoric that can come from the White House.” The strong performance of Energize’s investments, he said, reveals that utility and industrial customers are very much still looking to build a more decentralized, digitized, and clean grid. “The traction of our portfolio is actually the best it’s ever been, at the exact same time that the [U.S.-based] LPs stopped focusing on the space,” Tough told me.
But Europe can’t be a panacea for all of U.S. climate tech’s woes. As many of the experts I talked to noted, while Europe provides a strong environment for trialing new tech, it often lags when it comes to scale. To be globally competitive, the companies that are turning to Europe during this period of turmoil will eventually need to bring down their costs enough to thrive in markets that lack generous incentives and mandates.
But if Europe — with its infinitely more consistent and definitively more supportive policy landscape — can serve as a test bed for demonstrating both the viability of novel climate solutions and the potential to drive down their costs, then it’s certainly time to go all in. Because for many sectors — from green hydrogen to thermal batteries and sustainable transportation fuels — the U.S. has simply given up.
Current conditions: The Philippines is facing yet another deadly cyclone as Super Typhoon Fung-wong makes landfall just days after Typhoon Kalmaegi • Northern Great Lakes states are preparing for as much as six inches of snow • Heavy rainfall is triggering flash floods in Uganda.
The United Nations’ annual climate conference officially started in Belém, Brazil, just a few hours ago. The 30th Conference of the Parties to the UN Framework Convention on Climate Change comes days after the close of the Leaders Summit, which I reported on last week, and takes place against the backdrop of the United States’ withdrawal from the Paris Agreement and a general pullback of worldwide ambitions for decarbonization. It will be the first COP in years to take place without a significant American presence, although more than 100 U.S. officials — including the governor of Wisconsin and the mayor of Phoenix — are traveling to Brazil for the event. But the Trump administration opted against sending a high-level official delegation.
“Somehow the reduction in enthusiasm of the Global North is showing that the Global South is moving,” Corrêa do Lago told reporters in Belém, according to The Guardian. “It is not just this year, it has been moving for years, but it did not have the exposure that it has now.”

New York regulators approved an underwater gas pipeline, reversing past decisions and teeing up what could be the first big policy fight between Governor Kathy Hochul and New York City Mayor-elect Zohran Mamdani. The state Department of Environmental Conservation issued what New York Focus described as crucial water permits for the Northeast Supply Enhancement project, a line connecting New York’s outer borough gas network to the fracking fields of Pennsylvania. The agency had previously rejected the project three times. The regulators also announced that the even larger Constitution pipeline between New York and New England would not go ahead. “We need to govern in reality,” Hochul said in a statement. “We are facing war against clean energy from Washington Republicans, including our New York delegation, which is why we have adopted an all-of-the-above approach that includes a continued commitment to renewables and nuclear power to ensure grid reliability and affordability.”
Mamdani stayed mostly mum on climate and energy policy during the campaign, as Heatmap’s Robinson Meyer wrote, though he did propose putting solar panels on school roofs and came out against the pipeline. While Mamdani seems unlikely to back the pipeline Hochul and President Donald Trump have championed, during a mayoral debate he expressed support for the governor’s plan to build a new nuclear plant upstate.
Late last week, Pine Gate Renewables became the largest clean energy developer yet to declare bankruptcy since Trump and Congress overhauled federal policy to quickly phase out tax credits for wind and solar projects. In its Chapter 11 filings, the North Carolina-based company blamed provisions in Trump’s One Big Beautiful Bill Act that put strict limits on the use of equipment from “foreign entities of concern,” such as China. “During the [Inflation Reduction Act] days, pretty much anyone was willing to lend capital against anyone building projects,” Pol Lezcano, director of energy and renewables at the real estate services and investment firm CBRE, told the Financial Times. “That results in developer pipelines that may or may not be realistic.”
Sign up to receive Heatmap AM in your inbox every morning:
The Southwest Power Pool’s board of directors approved an $8.6 billion slate of 50 transmission projects across the grid system’s 14 states. The improvements are set to help the grid meet what it expects to be doubled demand in the next 10 years. The investments are meant to harden the “backbone” of the grid, which the operator said “is at capacity and forecasted load growth will only exacerbate the existing strain,” Utility Dive reported. The grid operator also warned that “simply adding new generation will not resolve the challenges.”
Oil giant Shell and the industrial behemoth Mitsubishi agreed to provide up to $17 million to a startup that plans to build a pilot plant capable of pulling both carbon dioxide and water from the atmosphere. The funding would cover the direct air capture startup Avnos’ Project Cedar. The project could remove 3,000 metric tons of carbon from the atmosphere every year, along with 6,000 tons of clean freshwater. “What you’re seeing in Shell and Mitsubishi investing here is the opportunity to grow with us, to sort of come on this commercialization journey with us, to ultimately get to a place where we’re offering highly cost competitive CO2 removal credits in the market,” Will Kain, CEO of Avnos, told E&E News.
The private capital helps make up for some of the federal funding the Trump administration is expected to cut as part of broad slashes to climate-tech investments. But as Heatmap’s Emily Pontecorvo reported last month from north of the border, Canada is developing into a hot zone of DAC development.
The future of remote sensing will belong to China. At least, that’s what the research suggests. This broad category involves the use of technologies such as lasers, imagery, and hyperspectral imagery, and is key to everything from autonomous driving to climate monitoring. At least 47% of studies in peer-reviewed publications on remote sensing now originate in China, while just 9% come from the United States, according to the New York University paper. That research clout is turning into an economic advantage. China now accounts for the majority of remote sensing patents filed worldwide. “This represents one of the most significant shifts in global technological leadership in recent history,” Debra Laefer, a professor in the NYU Tandon Civil and Urban Engineering program and the lead author, said in a statement.
The company is betting its unique vanadium-free electrolyte will make it cost-competitive with lithium-ion.
In a year marked by the rise and fall of battery companies in the U.S., one Bay Area startup thinks it can break through with a twist on a well-established technology: flow batteries. Unlike lithium-ion cells, flow batteries store liquid electrolytes in external tanks. While the system is bulkier and traditionally costlier than lithium-ion, it also offers significantly longer cycle life, the ability for long-duration energy storage, and a virtually impeccable safety profile.
Now this startup, Quino Energy, says it’s developed an electrolyte chemistry that will allow it to compete with lithium-ion on cost while retaining all the typical benefits of flow batteries. While flow batteries have already achieved relatively widespread adoption in the Chinese market, Quino is looking to India for its initial deployments. Today, the company announced that it’s raised $10 million from the Hyderabad-based sustainable energy company Atri Energy Transitions to demonstrate and scale its tech in the country.
“Obviously some Trump administration policies have weakened the business case for renewables and therefore also storage,” Eugene Beh, Quino’s founder and CEO, told me when I asked what it was like to fundraise in this environment. “But it’s actually outside the U.S., where the appetite still remains very strong.”
The deployment of battery energy storage in India lags far behind the pace of renewables adoption, presenting both a challenge and an opportunity for the sector. “India does have an opportunity to leapfrog into a more flexible, resilient, and sustainable power system,” Shreyas Shende, a senior research associate at Johns Hopkins’ Net Zero Industrial Policy Lab, told me. The government appears eager to make it happen, setting ambitious targets and offering ample incentives for tech-neutral battery storage deployments, as it looks to lean into novel technologies.
“Indian policymakers have been trying to double down on the R&D and innovation landscape because they’re trying to figure out, how do you reduce dependence on these lithium ion batteries?” Shende said. China dominates the global lithium-ion market, and also has a fractious geopolitical relationship with India, So much like the U.S., India is eager to reduce its dependence on Chinese imports. “Anything that helps you move away from that would only be welcome as long as there’s cost compatibility,” he added
Beh told me that India also presents a natural market for Quino’s expansion, in large part because the key raw material for its proprietary electrolyte chemistry — a clothing dye derived from coal tar — is primarily produced in China and India. But with tariffs and other trade barriers, China poses a much more challenging environment to work in or sell from these days, making the Indian market a simpler choice.
Quino’s dye-based electrolyte is designed to be significantly cheaper than the industry standard, which relies on the element vanadium dissolved in an acidic solution. In vanadium flow batteries, the electrolyte alone can account for roughly 70% of the product’s total cost, Beh said. “We’re using exactly the same hardware as what the vanadium flow battery manufacturers are doing,” he told me minus the most expensive part. “Instead, we use our organic electrolyte in place of vanadium, which will be about one quarter of the cost.”
Like many other companies these days, Beh views data centers as a key market for Quino’s tech — not just because that’s where the money’s at, but also due to one of flow batteries’ core advantages: their extremely long cycle lives. While lithium-ion energy storage systems can only complete from 3,000 to 5,000 cycles before losing 20% or more of their capacity, with flow batteries, the number of cycles doesn’t correlate with longevity at all. That’s because their liquid-based chemistry allows them to charge and discharge without physically stressing the electrodes.
That’s a key advantage for AI data centers, which tend to have spiky usage patterns determined by the time of day and events that trigger surges in web traffic. Many baseload power sources can’t ramp quickly enough to meet spikes in demand, and gas peaker plants are expensive. That makes batteries a great option — especially those that can respond to fluctuations by cycling multiple times per day without degrading their performance.
The company hasn’t announced any partnerships with data center operators to date — though hyperscalers are certainly investing in the Indian market. First up will be getting the company’s demonstration plants online in both California and India. Quino already operates a 100-kilowatt-hour pilot facility near Buffalo, New York, and was awarded a $10 million grant from the California Energy Commission and a $5 million grant from the Department of Energy this year to deploy a larger, 5-megawatt-hour battery at a regional health care center in Southern California. Beh expects that to be operational by the end of 2027.
But its plans in India are both more ambitious and nearer-term. In partnership with Atri, the company plans to build a 150- to 200-megawatt-hour electrolyte production facility, which Beh says should come online next year. With less government funding in the mix, there’s simply less bureaucracy to navigate, he explained. Further streamlining the process is the fact that Atri owns the site where the plant will be built. “Obviously if you have a motivated site owner who’s also an investor in you, then things will go a lot faster,” Beh told me.
The goal for this facility is to enable production of a battery that’s cost-competitive with vanadium flow batteries. “That ought to enable us to enter into a virtuous cycle, where we make something cheaper than vanadium, people doing vanadium will switch to us, that drives more demand, and the cost goes down further,” Beh told me. Then, once the company scales to roughly a gigawatt-hour of annual production, he expects it will be able to offer batteries with a capital cost roughly 30% lower than lithium-ion energy storage systems.
If it achieves that target, in theory at least, the Indian market will be ready. A recent analysis estimates that the country will need 61 gigawatts of energy storage capacity by 2030 to support its goal of 500 gigawatts of clean power, rising to 97 gigawatts by 2032. “If battery prices don’t fall, I think the focus will be towards pumped hydro,” Shende told me. That’s where the vast majority of India’s energy storage comes from today. “But in case they do fall, I think battery storage will lead the way.”
The hope is that by the time Quino is producing at scale overseas, demand and investor interest will be strong enough to support a large domestic manufacturing plant as well. “In the U.S., it feels like a lot of investment attention just turned to AI,” Beh told me, explaining that investors are taking a “wait and see” approach to energy infrastructure such as Quino. But he doesn’t see that lasting. “I think this mega-trend of how we generate and use electricity is just not going away.”