You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Oscar-winner and El Capitan free solo-er talks to Heatmap about solar panels, fatherhood, and his new docuseries, Arctic Ascent.
In 2017, rock climber Alex Honnold went on Jimmy Kimmel Live! to promote Free Solo, the then-new documentary about his unassisted climb of Yosemite’s El Capitan. “Is there anything bigger than that?” Kimmel prompted as a closing question.
“I mean, there are technically some bigger walls in the world,” Honnold said. “But they’re in very remote places — like Greenland.”
Five years and an Oscar later, Honnold was scrambling off a boat at the base of Ingmikortilaq, a crumbly sea cliff that towers nearly 1,000 feet higher than El Cap over an iceberg-ridden fjord in eastern Greenland. His intended first ascent was the culmination of a six-week adventure across ice fields and glaciers.
This time, Honnold wasn’t alone. The Greenland expedition included two other legendary climbers, Hazel Findlay and Mikey Schaefer, as well as Aldo Kane, who provided safety and technical support; Adam Kjeldsen, a Greenlandic guide; and perhaps most surprisingly, Heïdi Sevestre, a Frenchglaciologist who helped set up or run 16 different studies to collect data for scientists around the world.
The team’s adventure is captured in Arctic Ascent with Alex Honnold, a three-part docuseries that premieres on Hulu and Disney+ on February 5. Ahead of its release, I spoke separately with Honnold and Sevestre about the expedition, the importance of climate science, and their respective climbs. (While Sevestre, previously a non-climber, didn’t attempt Ingmikortilaq, she did scale a 1,500-foot rock face known as the Pool Wall while drilling rock cores for samples.) Our conversations have been lightly edited and condensed for clarity.
Unlike a lot of other outdoor sports like mountaineering or skiing or even surfing, rock climbing doesn’t seem as obviously imperiled by climate change. How did this become the cause you wanted to devote your time and money to?
Oh, I think climbing is more imperiled by climate change than most other sports. I mean, you’re right that maybe it’s not as impactful as to skiing, but it’s way more impactful than almost every other sport.
You’re still in the mountains. Wildfire smoke every summer — that’s now a thing that just didn’t exist when I was growing up climbing. Even if you’re just rock climbing, you’re always approaching in the mountains. Nowadays, most couloirs [chutes between rocks that might typically fill with snow in the winter] have melted out. Stable snow fields that have existed for generations are now melted out. Piles of teetering rubble are falling down mountainsides, and also a lot of routes are just less safe. The mountainsides themselves are collapsing, like the Aiguille du Midi gondola in Chamonix. Which, actually — one of the things we were installing in Greenland were temperature sensors on one of the cliffs, related to studying how rocks thaw out, what happens when permafrost melts. I would say that climate change is still incredibly relevant for us.
Your way into climate was through your climbing, then?
A big part of my environmental awareness in general is because of the experiences I’ve had outdoors as a climber. But long before [the Greenland expedition], I started a foundation in 2012 where I’ve been supporting community solar projects around the world and caring about the transition to renewables. I’ve cared about climate change forever. I think this was just the first opportunity to do it on mainstream television.
I saw that Arctic Ascent purchased carbon credits to compensate for production emissions. I was hoping you could talk about that decision, and how else you might have minimized your impact on the expedition, since I don’t think people are aware of how energy intensive film and TV productions can be.
In this case, other than the obvious expense of all of our flights getting to Greenland, we had a relatively low carbon footprint because we were camping the whole time. I think you’re right that a lot of television is kind of insane when you have all the RVs and everyone’s in their own thing and there’s hair and makeup and it’s just crazy with, like, a million cameras. In this case, it was basically a bunch of people camping on a glacier for six weeks, so it’s not quite the same as a Hollywood set.
But yeah, I think the idea to purchase offsets was the obvious bare minimum for a project like this. If you’re going to be doing a whole story around sea level rise, you have to do something.
The Honnold Foundation focuses on bringing solar panels to vulnerable communities, but these are fairly small projects compared to the expansive solar farms we might more traditionally think of. Why did you choose to focus your time on something that might seem, at least on paper, to be of a smaller scale than, say, electrifying the grid?
It’s a totally fair question. In 2012, it wasn’t totally clear that the world was transitioning to renewables at all. It seemed like it was inevitable, but you’re never really sure — you know, back then people were into hydrogen and you’re like, “Oh, maybe we’re going to have hydrogen cars, or maybe battery electric really takes off,” blah, blah, blah. Anyway, now it seems totally clear that the world is transitioning to renewables. Within some timeframe, like 20 to 50 years, the world will be 100% renewable.
The thing is, we currently live in a world where something like a billion people don’t have access to power, and transitioning to renewables will still leave us in a world where a billion people don’t have access to power. [Editor’s note: The number of people living without electricity today is actually closer to 760 million.] As the system changes, there are so many people who are left behind. What the Honnold Foundation tries to do is find that sweet spot in helping with the transition, helping the people who are being left behind.
Part of that is just by necessity — I’m a professional rock climber, I’m not a tech billionaire. So the small-scale grants just make more sense to some extent, but they also have the biggest impact on human lives because when you do these small-scale projects, you can fundamentally change the way people live. That’s a huge impact.
I live in Las Vegas, and you see huge solar farms around the desert. It’s great; the grid is going 100% renewable. I’m into that. But realistically, the only difference it makes in most people’s lives is maybe a small change in their utility rate. Really, the people that benefit are the utility shareholders — it’s some Warren Buffett-owned utility in my case, NV Energy. That really isn’t that inspiring. This is my long rant to say that the Honnold Foundation is trying to help the humans who need it the most.
Did you get a chance to use solar panels on the Greenland expedition?
On this trip, no, because they were running a generator for production and it was charging, like, 50 batteries.
It’s funny because we did an expedition in Antarctica where we made a little climbing film as well. And on that trip, they planned to take a generator and then somebody just forgot the fuel. So we got there and we were like, “Oh, no,” and we wound up doing the whole trip off solar and it totally worked.
This was your first expedition since becoming a father. You’ve worked on the climate cause for a long time now, but I’m curious if your perspective has changed at all since your daughter June joined your family — and I know you have another daughter on the way!
Yeah, soon! No, I don’t think my perspective has changed too much. I’ve always cared about these kinds of issues. The bigger change is in the way that I spend my time. Having a family forces me to be a little bit tighter about the choices that I’m making, what expeditions I choose to go on. That makes a trip like this even more worthwhile, where you get to do great climbing and there’s a real purpose behind it, and you get to share important knowledge about things that matter.
Can you tell me a little more about the decision to bring Heïdi on board? I heard her version of the story earlier this week but I’m curious about how you found her and roped her in.
Isn’t she so amazing?
She was delightful!
That’s the thing with Heïdi. Because when you spend time with her, she just makes you care about about ice. And I don’t even like ice. It’s not my thing; I like rocks. But she made me much more knowledgeable and much more caring about that type of world.
Do you consider yourself an optimist when it comes to climate change?
I think so, which is weird because I’m optimistic despite all the data to the contrary. I understand the predictions, but there’s so much to gain. So far it’s been 20 years that I’ve been reading environmental nonfiction and we haven’t really chosen to make anything of this opportunity, but we still have this incredible opportunity to build a better world to live in, a cleaner world. We can still choose that at any point. And I just keep thinking that at some point, we’re going to choose it. You can’t keep ignoring the obvious thing forever.
How did you get involved in the Arctic Ascent expedition?
This was an absolute dream come true for me — I felt extremely lucky to get a call from the team. It is extremely challenging to go to that one remote location, one of the least studied places on Earth. But Alex, as you know, is a firm believer in the scientific work. The planets really aligned. It took about a year prior to the expedition to design the work we could do with boots on the ground.
I wanted to know what it was like to put together scientific objectives for an expedition like this. It’s a little bit unconventional because there’s a film crew and there was climbing involved.
I think it was extremely brave and extremely daring of the entire team to have the willingness to invite the scientists on board. Because not only did we have the best climbers in the world climbing in a very challenging and hostile environment, we’re also filming a series of documentaries and we have to do some of the very best possible science. So it’s not that easy! But what we did is, we took it step by step. We contacted all the universities and labs and institutions interested in data from this part of the world — and also interested in training me on how to collect this data. Because I really felt — it’s what I was thinking the whole time — I really felt like I was an astronaut on the ISS. I was the only one, and I had to do the best possible work.
We ended up with 16 different protocols to do on this expedition, so it was really major. And, you know, we worked with NASA, we worked with research institutes in Denmark, the University of Buffalo, and the University of Kansas, for example. So it was challenging but a dream come true to be trusted by the scientists.
Your first big polar expedition was actually to Greenland, back in 2011. Had you been back to the island between that research trip and this one?
I had spent a tiny bit of time — not so far in the field as East Greenland, but around the coastlines. But what I was doing there was mostly science communication with people who wanted to learn about the impacts of climate change on the Greenland ice sheets. So I hadn’t been on a big research expedition to Greenland since 2011. And the changes were absolutely massive.
That was going to be my question!
The Arctic is one of the fastest-warming places on Earth. Everything that’s taking place in Greenland is impacting the rest of the world, so I felt that we had a duty and a mission — on top of climbing these incredible monoliths, we actually had to bring something back to society.
In the series, you talk about how remote and understudied East Greenland is by climate scientists. But during the expedition, you were being assisted by support helicopters and by boats. So why aren’t expeditions like this one happening all the time? Is it an issue of funding or a lack of scientific interest in this particular region?
It’s crazy to think of how little data we have from the ground [in East Greenland]. We have satellites — we have as many satellites as we want. But it is very tricky to get there. What you have to understand about this place is that for 10 months of the year, there is sea ice blocking access to this field. Ten months of the year! So the rest of the year — yes, we can access by plane, we can access by boat, but it’s very expensive.
What was great about this project is that we had in mind, “How can we lower our carbon footprint?” This is why, for example, we worked with fishermen who had boats from a nearby village at the entrance of the field. It was very important for us to use local means of transportation. Of course, we had to use helicopters every now and then, because there was no other way. But it’s remote, it’s expensive, and on top of everything, it is extremely hostile.
Oh my gosh, the bashing you get when you go there! This is something that we really wanted to show in the series — how powerful nature can be. And climate change is accelerating and making these changes even more violent. So I think it’s important to show that when nature starts to be a bit destabilized, it can get very angry.
There was a paper in Nature that came out earlier this month that said nearly every glacier in Greenland has thinned or retreated over the past few decades. In the series, there’s a bit of good news, which is that the Daugaard-Jensen Glacier is a little bit more stable than you were anticipating. Do you have any insight into why that might be?
What’s so great is, it keeps part of the mystery! I like that we still don’t totally understand what’s taking place.
The scientists we’ve been working with have told us — this is a bit technical — but it has to do with the shape of the bedrock. It seems that the glacier is resting on a little ridge that might be holding everything together. This might be the reason why the glacier is still stable; also, this part of Greenland still receives a lot of snow.
But we’ve seen some cracks in this perfect picture. You know, the NASA float [that we launched on the expedition] has told us that the temperature of the water in the fjords is increasing. So it’s not all perfect. The environment around it is definitely changing, but it seems that it has some advantages.
Were there any findings from the expedition that you are particularly excited about?
All of them! But science takes a very long time, so at the moment, we’re still waiting on a lot of the results from these different protocols. But what I want to share is something that is very simple: Greenland holds a lot of ice, and if we lose the ice, it means 6 to 7 meters of sea-level rise. As you saw in the paper that was published by Nature, at the moment, Greenland is losing 30 million tons of ice per hour. What is crucial to understand is that every action we conduct back home to reduce our carbon footprints and to preserve our climate helps Greenland and helps our collective future. All this data will help us to prepare for the things to come.
Last question: Have you taken up rock climbing?
I’ll be honest: no. I think I’m a bit traumatized in a good way. I think I needed a minute to recover. But I really want to start climbing again — now, with the launch of this series, I know that it’ll be my mission for this year. Otherwise, I think Alex and Hazel will never forgive me.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
What if, instead of maintaining old pipelines, gas utilities paid for homes to electrify?
California just hit a critical climate milestone: On September 1, Pacific Gas and Electric, the biggest utility in the state, raised natural gas rates by close to $6 due to shrinking gas demand.
I didn’t say it was a milestone worth celebrating. But experts have long warned that gas rates would go up as customers started to use less of the fossil fuel. PG&E is now forecasting enough of a drop in demand, whether because homeowners are making efficiency improvements or switching to electric appliances, that it needs to charge everyone a bit more to keep up with the cost of maintaining its pipelines.
Shortly after the rate increase went into effect, however, Governor Gavin Newsom signed a bill aimed at addressing this exact problem. The new law gives PG&E and other utilities permission to use money they would have spent to replace aging, leaky pipelines to pay for the electrification of the homes served by those pipes — as long as electrifying the homes is cheaper. Instead of investing millions of ratepayer dollars into the gas system, utilities can start to decommission parts of it, shrinking gas use and fixed costs in tandem.
PG&E actually already has the freedom to do this, and has even completed a fair number of projects. But the utility has had limited success, mainly because of an anti-discrimination law that gives building owners the right to stick with natural gas. It only takes one gas stalwart to thwart a whole neighborhood’s prospects for free electric appliances, since in order to keep delivering gas to that one household, the utility has to invest in the entire section of pipeline serving the area. A 2023 report showed that while PG&E had completed more than 100 projects, it hadn’t been able to convince clusters of customers larger than five at a time to convert.
The new law doesn’t fundamentally change the anti-discrimination rule, known as a utility’s “duty to serve,” but it does relieve PG&E and others of this duty if at least two-thirds of the homeowners served by a given section of pipeline consent to getting off gas. For now, the legislation limits utilities to executing 30 such projects. But for those 30, as long as two-thirds consent, the utility can now tell the holdouts that it is retiring the pipeline, and that they have no choice but to get on the electric bandwagon.
“If a supermajority wants it, it can move forward,” Matt Vespa, a senior attorney from Earthjustice who worked on the legislation, told me. “Which I think is probably a good place to start from. You want to have a place where there’s significant buy-in.”
This strategy, sometimes called “zonal decarbonization” or “targeted electrification,” is one that many climate groups are advocating for as a way to achieve an orderly and equitable transition off of natural gas. The approach most states have taken so far — providing subsidies that gently prod consumers into going electric — results in a random pattern of adoption that can benefit some homeowners while harming others. It also does nothing to deter gas utilities from investing hundreds of millions of dollars in maintaining, replacing, or building new pipelines each year — investments that are set up to be recouped from ratepayers over the course of decades.
California isn’t the first place in the world to experiment with targeted electrification. The Swiss city of Zurich began systematically shutting down sections of its gas system in 2021, giving affected users about a decade of warning and offering partial compensation for the cost of new equipment. In Massachusetts, the utility Eversource is piloting a unique neighborhood-scale electrification project. The company hooked up 32 residential buildings and a few commercial businesses in the city of Framingham to a new underground network of pipes that carry water rather than natural gas, which in turn connect to geothermal heat pumps that use the water to heat or cool the air inside. There are more than a dozen such “thermal energy network” pilot projects in various stages in Massachusetts, New York, Colorado, Washington, Vermont, Maryland, and Minnesota.
But the new California program is unique in its scale and approach. For one thing, it applies to all gas utilities in the state. Beginning next summer, they will each need to submit maps to the utility commission that identify potential pipeline replacement projects; then, in 2026, regulators will use those maps to designate priority areas, giving precedence to low-income communities and households that lack heating or cooling. By July of that year, the commission must establish the rules of the pilot program, including a methodology for utilities to determine when electrification is more cost-effective than pipeline replacement, and rules for how utilities can pay for the projects and recover costs.
PG&E supported the bill and worked closely with its authors on the language. The utility declined an interview, but emailed me a statement saying the legislation “enables cost-effective, targeted electrification projects which will help avoid more expensive gas pipeline replacements, reducing gas system operating costs, and support the state’s and PG&E’s decarbonization goals.”
Utilities will still be spending ratepayer money on the electrification projects, but far less than they would have spent on pipeline infrastructure. For the remaining gas customers, it’s still possible rates will go up, though by less than they would have otherwise. Mike Henchen, a principal in the carbon-free buildings program at RMI, told me these pilot projects alone are not going to pull so many customers away from the gas system that it will put upward pressure on rates. The law caps the program at no more than 1% of a utility’s customers.
Vespa, the Earthjustice attorney, told me he originally worked on a more ambitious version of the bill that would have required utilities to avoid any new investments in the gas system when electrification was a cheaper alternative. But it was pared back and made voluntary in order to get it through the legislature. “The hope is that we'll get projects off the ground, we’ll get proof-of-concept,” he said. “I think there was a need to demonstrate some successful stories and then hopefully expand from there.”
While these pilots make sense, economically, for a dual gas and electric company like PG&E, one big question is whether the state’s gas-only utilities like Southern California Gas will take the initiative. (SoCalGas did not respond to my inquiry prior to publication, but the company did support the legislation.)
Looking ahead, even if lawmakers do expand the program to authorize every cost-effective project, this model can’t transition the entire state away from gas. These projects are more likely to pencil out in places with lower housing density, where a given section of pipeline is serving only a handful of homes. A fact sheet about the bill published by its lead sponsor, state senator David Min, says that “zero emissions alternatives” to pipeline replacement are only technically feasible and cost effective for about 5% of PG&E’s territory. “Gas customers won't be able to pay for the decommissioning of the whole gas system, or even 50% of it,” said Henchen.
In the meantime, however, there’s lots of low-hanging fruit to pluck. Targeted electrification of just 3% to 4% of gas customers across the state could reduce gas utility spending by $15 billion to $26 billion through 2045, according to an analysis by Energy and Environmental Economics.
“It’s a modest step,” said Vespa of the new law. “But I do think it’s meaningful to start moving forward and developing the frameworks for this.”
Revoy is already hitching its power packs to semis in one of America’s busiest shipping corridors.
Battery swaps used to be the future. To solve the unsolvable problem of long recharging times for electric vehicles, some innovators at the dawn of this EV age imagined roadside stops where drivers would trade their depleted battery for a fully charged one in a matter of minutes, then be on their merry way.
That vision didn’t work out for passenger EVs — the industry chose DC fast charging instead. If the startup Revoy has its way, however, this kind of idea might be exactly the thing that helps the trucking industry surmount its huge hurdles to using electric power.
Revoy’s creation is, essentially, a bonus battery pack on wheels that turns an ordinary semi into an EV for as long as the battery lasts. The rolling module carries a 525 kilowatt-hour lithium iron phosphate battery pack attaches to the back of the truck; then, the trailer full of cargo attaches to the module. The pack offers a typical truck 250 miles of electric driving. Founder Ian Rust told me that’s just enough energy to reach the next Revoy station, where the trucker could swap their depleted module for a fresh one. And if the battery hits zero charge, that's no problem because the truck reverts to its diesel engine. It’s a little like a plug-in hybrid vehicle, if the PHEV towed its battery pack like an Airstream and could drop it off at will.
“If you run out of battery with us, there's basically no range anxiety,” Rust said. “And we do it intentionally on our routes, run it down to as close to zero as possible before we hit the next Revoy swapping station. That way you can get the maximum value of the battery without having to worry about range.”
To start, a trucker in a normal, everyday semi pulls up to a Revoy station and drops their trailer. A worker attaches a fully charged Revoy unit to the truck and trailer—all in five minutes or less, Revoy promises. Once in place, the unit interfaces seamlessly with the truck’s drivetrain and controls.
“It basically takes over as the cruise control on the vehicle,” he said. “So the driver gets it up to speed, takes their foot off the gas, and then we actually become the primary powertrain on the vehicle. You really only have to burn diesel for the little bit that is getting onto the highway and then getting off the highway, and you get really extreme MPGs with that.”
The Revoy model is going through its real-world paces as we speak. Rust’s startup has partnered with Ryder trucking, whose drivers are powering their semis with Revoy EVs at battery-swap stops along a stretch of Interstate 30 in Texas and Arkansas, a major highway for auto parts and other supplies coming from Mexico. Rust hopes the next Revoy corridor will go into Washington State, where the ample hydropower could help supply clean energy to all those swappable batteries. Happily, he said, Revoy can expand piecemeal like this because its approach negates the chicken-and-egg problem of needing a whole nation of EV chargers to make the vehicles themselves viable. Once a truck leaves a Revoy corridor, it’s just a diesel-powered truck again.
Early data from the Ryder pilot shows that the EV unit slashed how much diesel fuel a truck needs to make it down the designated corridor. “This is a way we can reduce a path to reduce the emissions of our fleet without having to buy anything — and without having to have to worry about how much utilization we're going to have to get,” Mike Plasencia, group director of New Product Strategy at Ryder, told me.
Trucking represents one of the biggest opportunities for cutting the carbon emissions of the transportation sector. It’s also one of the most challenging. Heatmap has covered the problem of oversized SUV and pickup truck EVs, which need larger, more expensive batteries to propel them. The trucking problem is that issue on steroids: A semi can tow up to 80,000 pounds down an American highway.
There are companies building true EV semi trucks despite this tall order — Tesla’s has been road-testing one while hauling Pepsi around, and trucking mainstays like Peterbilt are trying their hand as well. Although the EV model that works for everyday cars — a built-in battery that requires recharging after a couple hundred miles — can work for short-haul trucks that move freight around a city, it is a difficult fit for long-haul trucking where a driver must cover vast distances on a strict timetable. That’s exactly where Revoy is trying to break in.
"We are really focused on long haul,” he told me. “The reason for that is, it's the bigger market. One of the big misconceptions in trucking is that it's dominated by short haul. It's very much the opposite. And it's the bigger emission source, it's the bigger fuel user."
Rust has a background in robotics and devised the Revoy system as a potential solution to both the high cost of EV semis and to the huge chunks of time lost to fueling during long-distance driving. Another part of the pitch is that the Revoy unit is more than a battery. By employing the regenerative braking common in EVs, the Revoy provides a redundancy beyond air brakes for slowing a big semi—that way, if the air brakes fail, a trucker has a better option than the runaway truck lane. The setup also provides power and active steering to the Revoy’s axle, which Rust told me makes the big rig easier to maneuver.
Plasencia agrees. “The feedback from the drivers has been positive,” he said. “You get feedback messages like, it felt like I was driving a car, or like I wasn't carrying anything.”
As it tries to expand to more trucking corridors across the nation, Revoy may face an uphill battle in trying to sell truckers and trucking companies on an entirely new way to think about electrifying their fleets. But Rust has one ace up his sleeve: With Revoy, they get to keep their trucks — no need to buy new ones.
On the DOE’s transmission projects, Cybertruck recalls, and Antarctic greening
Current conditions: Hurricane Kirk, now a Category 4 storm, could bring life-threatening surf and rip currents to the East Coast this weekend • The New Zealand city of Dunedin is flooded after its rainiest day in more than 100 years • Parts of the U.S. may be able to see the Northern Lights this weekend after the sun released its biggest solar flare since 2017.
The Energy Department yesterday announced $1.5 billion in investments toward four grid transmission projects. The selected projects will “enable nearly 1,000 miles of new transmission development and 7,100 MW of new capacity throughout Louisiana, Maine, Mississippi, New Mexico, Oklahoma, and Texas, while creating nearly 9,000 good-paying jobs,” the DOE said in a statement. One of the projects, called Southern Spirit, will involve installing a 320-mile high-voltage direct current line across Texas, Louisiana, and Mississippi that connects Texas’ ERCOT grid to the larger U.S. grid for the first time. This “will enhance reliability and prevent outages during extreme weather events,” the DOE said. “This is a REALLY. BIG. DEAL,” wrote Michelle Lewis at Electrek.
The DOE also released a study examining grid demands through 2050 and concluded that the U.S. will need to double or even triple transmission capacity by 2050 compared to 2020 to meet growing electricity demand.
Duke Energy, one of the country’s largest utilities, appears to be walking back its commitment to ditch coal by 2035. In a new plan released yesterday, Duke said it would not shut down the second-largest coal-fired power plant in the U.S., Gibson Station in Indiana, in 2035 as previously planned, but would instead run it through 2038. The company plans to retrofit the plant to run on natural gas as well as coal, with similar natural-gas conversions planned for other coal plants. The company also slashed projects for expanding renewables. According toBloomberg, a Duke spokeswoman cited increasing power demand for the changes. Electricity demand has seen a recent surge in part due to a boom in data centers. Ben Inskeep, program director at the Citizens Action Coalition of Indiana, a consumer and environmental advocacy group, noted that Duke’s modeling has Indiana customers paying 4% more each year through 2030 “as Duke continues to cling to its coal plants and wastes hundreds of millions on gasifying coal.”
The Edison Electric Institute issued its latest electric vehicle forecast, anticipating EV trends through 2035. Some key projections from the trade group’s report:
Tesla issued another recall for the Cybertruck yesterday, the fifth recall for the electric pickup since its launch at the end of last year. The new recall has to do with the rearview camera, which apparently is too slow to display an image to the driver when shifting into reverse. It applies to about 27,000 trucks (which is pretty much all of them), but an over-the-air software update to fix the problem has already been released. There were no reports of injuries or accidents from the defect.
A new study published in Nature found that vegetation is expanding across Antarctica’s northernmost region, known as the Antarctic Peninsula. As the planet warms, plants like mosses and lichen are growing on rocks where snow and ice used to be, resulting in “greening.” Examining satellite data, the researchers from the universities of Exeter and Hertfordshire, and the British Antarctic Survey, were shocked to discover that the peninsula has seen a tenfold increase in vegetation cover since 1986. And the rate of greening has accelerated by over 30% since 2016. This greening is “creating an area suitable for more advanced plant life or invasive species to get a foothold,” co-author Olly Bartlett, a University of Hertfordshire researcher, told Inside Climate News. “These rates of change we’re seeing made us think that perhaps we’ve captured the start of a more dramatic transformation.”
Moss on Ardley Island in the Antarctic. Dan Charman/Nature
Japan has a vast underground concrete tunnel system that was built to take on overflow from excess rain water and prevent Tokyo from flooding. It’s 50 meters underground, and nearly 4 miles long.
Carl Court/Getty Images