You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Oscar-winner and El Capitan free solo-er talks to Heatmap about solar panels, fatherhood, and his new docuseries, Arctic Ascent.

In 2017, rock climber Alex Honnold went on Jimmy Kimmel Live! to promote Free Solo, the then-new documentary about his unassisted climb of Yosemite’s El Capitan. “Is there anything bigger than that?” Kimmel prompted as a closing question.
“I mean, there are technically some bigger walls in the world,” Honnold said. “But they’re in very remote places — like Greenland.”
Five years and an Oscar later, Honnold was scrambling off a boat at the base of Ingmikortilaq, a crumbly sea cliff that towers nearly 1,000 feet higher than El Cap over an iceberg-ridden fjord in eastern Greenland. His intended first ascent was the culmination of a six-week adventure across ice fields and glaciers.
This time, Honnold wasn’t alone. The Greenland expedition included two other legendary climbers, Hazel Findlay and Mikey Schaefer, as well as Aldo Kane, who provided safety and technical support; Adam Kjeldsen, a Greenlandic guide; and perhaps most surprisingly, Heïdi Sevestre, a French glaciologist who helped set up or run 16 different studies to collect data for scientists around the world.
The team’s adventure is captured in Arctic Ascent with Alex Honnold, a three-part docuseries that premieres on Hulu and Disney+ on February 5. Ahead of its release, I spoke separately with Honnold and Sevestre about the expedition, the importance of climate science, and their respective climbs. (While Sevestre, previously a non-climber, didn’t attempt Ingmikortilaq, she did scale a 1,500-foot rock face known as the Pool Wall while drilling rock cores for samples.) Our conversations have been lightly edited and condensed for clarity.
Unlike a lot of other outdoor sports like mountaineering or skiing or even surfing, rock climbing doesn’t seem as obviously imperiled by climate change. How did this become the cause you wanted to devote your time and money to?
Oh, I think climbing is more imperiled by climate change than most other sports. I mean, you’re right that maybe it’s not as impactful as to skiing, but it’s way more impactful than almost every other sport.
You’re still in the mountains. Wildfire smoke every summer — that’s now a thing that just didn’t exist when I was growing up climbing. Even if you’re just rock climbing, you’re always approaching in the mountains. Nowadays, most couloirs [chutes between rocks that might typically fill with snow in the winter] have melted out. Stable snow fields that have existed for generations are now melted out. Piles of teetering rubble are falling down mountainsides, and also a lot of routes are just less safe. The mountainsides themselves are collapsing, like the Aiguille du Midi gondola in Chamonix. Which, actually — one of the things we were installing in Greenland were temperature sensors on one of the cliffs, related to studying how rocks thaw out, what happens when permafrost melts. I would say that climate change is still incredibly relevant for us.
Your way into climate was through your climbing, then?
A big part of my environmental awareness in general is because of the experiences I’ve had outdoors as a climber. But long before [the Greenland expedition], I started a foundation in 2012 where I’ve been supporting community solar projects around the world and caring about the transition to renewables. I’ve cared about climate change forever. I think this was just the first opportunity to do it on mainstream television.
I saw that Arctic Ascent purchased carbon credits to compensate for production emissions. I was hoping you could talk about that decision, and how else you might have minimized your impact on the expedition, since I don’t think people are aware of how energy intensive film and TV productions can be.
In this case, other than the obvious expense of all of our flights getting to Greenland, we had a relatively low carbon footprint because we were camping the whole time. I think you’re right that a lot of television is kind of insane when you have all the RVs and everyone’s in their own thing and there’s hair and makeup and it’s just crazy with, like, a million cameras. In this case, it was basically a bunch of people camping on a glacier for six weeks, so it’s not quite the same as a Hollywood set.
But yeah, I think the idea to purchase offsets was the obvious bare minimum for a project like this. If you’re going to be doing a whole story around sea level rise, you have to do something.
The Honnold Foundation focuses on bringing solar panels to vulnerable communities, but these are fairly small projects compared to the expansive solar farms we might more traditionally think of. Why did you choose to focus your time on something that might seem, at least on paper, to be of a smaller scale than, say, electrifying the grid?
It’s a totally fair question. In 2012, it wasn’t totally clear that the world was transitioning to renewables at all. It seemed like it was inevitable, but you’re never really sure — you know, back then people were into hydrogen and you’re like, “Oh, maybe we’re going to have hydrogen cars, or maybe battery electric really takes off,” blah, blah, blah. Anyway, now it seems totally clear that the world is transitioning to renewables. Within some timeframe, like 20 to 50 years, the world will be 100% renewable.
The thing is, we currently live in a world where something like a billion people don’t have access to power, and transitioning to renewables will still leave us in a world where a billion people don’t have access to power. [Editor’s note: The number of people living without electricity today is actually closer to 760 million.] As the system changes, there are so many people who are left behind. What the Honnold Foundation tries to do is find that sweet spot in helping with the transition, helping the people who are being left behind.
Part of that is just by necessity — I’m a professional rock climber, I’m not a tech billionaire. So the small-scale grants just make more sense to some extent, but they also have the biggest impact on human lives because when you do these small-scale projects, you can fundamentally change the way people live. That’s a huge impact.
I live in Las Vegas, and you see huge solar farms around the desert. It’s great; the grid is going 100% renewable. I’m into that. But realistically, the only difference it makes in most people’s lives is maybe a small change in their utility rate. Really, the people that benefit are the utility shareholders — it’s some Warren Buffett-owned utility in my case, NV Energy. That really isn’t that inspiring. This is my long rant to say that the Honnold Foundation is trying to help the humans who need it the most.
Did you get a chance to use solar panels on the Greenland expedition?
On this trip, no, because they were running a generator for production and it was charging, like, 50 batteries.
It’s funny because we did an expedition in Antarctica where we made a little climbing film as well. And on that trip, they planned to take a generator and then somebody just forgot the fuel. So we got there and we were like, “Oh, no,” and we wound up doing the whole trip off solar and it totally worked.
This was your first expedition since becoming a father. You’ve worked on the climate cause for a long time now, but I’m curious if your perspective has changed at all since your daughter June joined your family — and I know you have another daughter on the way!
Yeah, soon! No, I don’t think my perspective has changed too much. I’ve always cared about these kinds of issues. The bigger change is in the way that I spend my time. Having a family forces me to be a little bit tighter about the choices that I’m making, what expeditions I choose to go on. That makes a trip like this even more worthwhile, where you get to do great climbing and there’s a real purpose behind it, and you get to share important knowledge about things that matter.
Can you tell me a little more about the decision to bring Heïdi on board? I heard her version of the story earlier this week but I’m curious about how you found her and roped her in.
Isn’t she so amazing?
She was delightful!
That’s the thing with Heïdi. Because when you spend time with her, she just makes you care about about ice. And I don’t even like ice. It’s not my thing; I like rocks. But she made me much more knowledgeable and much more caring about that type of world.
Do you consider yourself an optimist when it comes to climate change?
I think so, which is weird because I’m optimistic despite all the data to the contrary. I understand the predictions, but there’s so much to gain. So far it’s been 20 years that I’ve been reading environmental nonfiction and we haven’t really chosen to make anything of this opportunity, but we still have this incredible opportunity to build a better world to live in, a cleaner world. We can still choose that at any point. And I just keep thinking that at some point, we’re going to choose it. You can’t keep ignoring the obvious thing forever.
How did you get involved in the Arctic Ascent expedition?
This was an absolute dream come true for me — I felt extremely lucky to get a call from the team. It is extremely challenging to go to that one remote location, one of the least studied places on Earth. But Alex, as you know, is a firm believer in the scientific work. The planets really aligned. It took about a year prior to the expedition to design the work we could do with boots on the ground.
I wanted to know what it was like to put together scientific objectives for an expedition like this. It’s a little bit unconventional because there’s a film crew and there was climbing involved.
I think it was extremely brave and extremely daring of the entire team to have the willingness to invite the scientists on board. Because not only did we have the best climbers in the world climbing in a very challenging and hostile environment, we’re also filming a series of documentaries and we have to do some of the very best possible science. So it’s not that easy! But what we did is, we took it step by step. We contacted all the universities and labs and institutions interested in data from this part of the world — and also interested in training me on how to collect this data. Because I really felt — it’s what I was thinking the whole time — I really felt like I was an astronaut on the ISS. I was the only one, and I had to do the best possible work.
We ended up with 16 different protocols to do on this expedition, so it was really major. And, you know, we worked with NASA, we worked with research institutes in Denmark, the University of Buffalo, and the University of Kansas, for example. So it was challenging but a dream come true to be trusted by the scientists.
Your first big polar expedition was actually to Greenland, back in 2011. Had you been back to the island between that research trip and this one?
I had spent a tiny bit of time — not so far in the field as East Greenland, but around the coastlines. But what I was doing there was mostly science communication with people who wanted to learn about the impacts of climate change on the Greenland ice sheets. So I hadn’t been on a big research expedition to Greenland since 2011. And the changes were absolutely massive.
That was going to be my question!
The Arctic is one of the fastest-warming places on Earth. Everything that’s taking place in Greenland is impacting the rest of the world, so I felt that we had a duty and a mission — on top of climbing these incredible monoliths, we actually had to bring something back to society.
In the series, you talk about how remote and understudied East Greenland is by climate scientists. But during the expedition, you were being assisted by support helicopters and by boats. So why aren’t expeditions like this one happening all the time? Is it an issue of funding or a lack of scientific interest in this particular region?
It’s crazy to think of how little data we have from the ground [in East Greenland]. We have satellites — we have as many satellites as we want. But it is very tricky to get there. What you have to understand about this place is that for 10 months of the year, there is sea ice blocking access to this field. Ten months of the year! So the rest of the year — yes, we can access by plane, we can access by boat, but it’s very expensive.
What was great about this project is that we had in mind, “How can we lower our carbon footprint?” This is why, for example, we worked with fishermen who had boats from a nearby village at the entrance of the field. It was very important for us to use local means of transportation. Of course, we had to use helicopters every now and then, because there was no other way. But it’s remote, it’s expensive, and on top of everything, it is extremely hostile.
Oh my gosh, the bashing you get when you go there! This is something that we really wanted to show in the series — how powerful nature can be. And climate change is accelerating and making these changes even more violent. So I think it’s important to show that when nature starts to be a bit destabilized, it can get very angry.
There was a paper in Nature that came out earlier this month that said nearly every glacier in Greenland has thinned or retreated over the past few decades. In the series, there’s a bit of good news, which is that the Daugaard-Jensen Glacier is a little bit more stable than you were anticipating. Do you have any insight into why that might be?
What’s so great is, it keeps part of the mystery! I like that we still don’t totally understand what’s taking place.
The scientists we’ve been working with have told us — this is a bit technical — but it has to do with the shape of the bedrock. It seems that the glacier is resting on a little ridge that might be holding everything together. This might be the reason why the glacier is still stable; also, this part of Greenland still receives a lot of snow.
But we’ve seen some cracks in this perfect picture. You know, the NASA float [that we launched on the expedition] has told us that the temperature of the water in the fjords is increasing. So it’s not all perfect. The environment around it is definitely changing, but it seems that it has some advantages.
Were there any findings from the expedition that you are particularly excited about?
All of them! But science takes a very long time, so at the moment, we’re still waiting on a lot of the results from these different protocols. But what I want to share is something that is very simple: Greenland holds a lot of ice, and if we lose the ice, it means 6 to 7 meters of sea-level rise. As you saw in the paper that was published by Nature, at the moment, Greenland is losing 30 million tons of ice per hour. What is crucial to understand is that every action we conduct back home to reduce our carbon footprints and to preserve our climate helps Greenland and helps our collective future. All this data will help us to prepare for the things to come.
Last question: Have you taken up rock climbing?
I’ll be honest: no. I think I’m a bit traumatized in a good way. I think I needed a minute to recover. But I really want to start climbing again — now, with the launch of this series, I know that it’ll be my mission for this year. Otherwise, I think Alex and Hazel will never forgive me.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A third judge rejected a stop work order, allowing the Coastal Virginia offshore wind project to proceed.
Offshore wind developers are now three for three in legal battles against Trump’s stop work orders now that Dominion Energy has defeated the administration in federal court.
District Judge Jamar Walker issued a preliminary injunction Friday blocking the stop work order on Dominion’s Coastal Virginia offshore wind project after the energy company argued it was issued arbitrarily and without proper basis. Dominion received amicus briefs supporting its case from unlikely allies, including from representatives of PJM Interconnection and David Belote, a former top Pentagon official who oversaw a military clearinghouse for offshore wind approval. This comes after Trump’s Department of Justice lost similar cases challenging the stop work orders against Orsted’s Revolution Wind off the coast of New England and Equinor’s Empire Wind off New York’s shoreline.
As for what comes next in the offshore wind legal saga, I see three potential flashpoints:
It’s important to remember the stakes of these cases. Orsted and Equinor have both said that even a week or two more of delays on one of these projects could jeopardize their projects and lead to cancellation due to narrow timelines for specialized ships, and Dominion stated in the challenge to its stop work order that halting construction may cost the company billions.
It’s aware of the problem. That doesn’t make it easier to solve.
The data center backlash has metastasized into a full-blown PR crisis, one the tech sector is trying to get out in front of. But it is unclear whether companies are responding effectively enough to avoid a cascading series of local bans and restrictions nationwide.
Our numbers don’t lie: At least 25 data center projects were canceled last year, and nearly 100 projects faced at least some form of opposition, according to Heatmap Pro data. We’ve also recorded more than 60 towns, cities and counties that have enacted some form of moratorium or restrictive ordinance against data center development. We expect these numbers to rise throughout the year, and it won’t be long before the data on data center opposition is rivaling the figures on total wind or solar projects fought in the United States.
I spent this week reviewing the primary motivations for conflict in these numerous data center fights and speaking with representatives of the data center sector and relevant connected enterprises, like electrical manufacturing. I am now convinced that the industry knows it has a profound challenge on its hands. Folks are doing a lot to address it, from good-neighbor promises to lobbying efforts at the state and federal level. But much more work will need to be done to avoid repeating mistakes that have bedeviled other industries that face similar land use backlash cycles, such as fossil fuel extraction, mining, and renewable energy infrastructure development.
Two primary issues undergird the data center mega-backlash we’re seeing today: energy use fears and water consumption confusion.
Starting with energy, it’s important to say that data center development currently correlates with higher electricity rates in areas where projects are being built, but the industry challenges the presumption that it is solely responsible for that phenomenon. In the eyes of opponents, utilities are scrambling to construct new power supplies to meet projected increases in energy demand, and this in turn is sending bills higher.
That’s because, as I’ve previously explained, data centers are getting power in two ways: off the existing regional electric grid or from on-site generation, either from larger new facilities (like new gas plants or solar farms) or diesel generators for baseload, backup purposes. But building new power infrastructure on site takes time, and speed is the name of the game right now in the AI race, so many simply attach to the existing grid.
Areas with rising electricity bills are more likely to ban or restrict data center development. Let’s just take one example: Aurora, Illinois, a suburb of Chicago and the second most-populous city in the state. Aurora instituted a 180-day moratorium on data center development last fall after receiving numerous complaints about data centers from residents, including a litany related to electricity bills. More than 1.5 gigawatts of data center capacity already operate in the surrounding Kane County, where residential electricity rates are at a three-year high and expected to increase over the near term – contributing to a high risk of opposition against new projects.
The second trouble spot is water, which data centers need to cool down their servers. Project developers have face a huge hurdle in the form of viral stories of households near data centers who suddenly lack a drop to drink. Prominent examples activists bring up include this tale of a family living next to a Meta facility in Newton County, Georgia, and this narrative of people living around an Amazon Web Services center in St. Joseph County, Indiana. Unsurprisingly, the St. Joseph County Council rejected a new data center in response to, among other things, very vocal water concerns. (It’s worth noting that the actual harm caused to water systems by data centers is at times both over- and under-stated, depending on the facility and location.)
“I think it’s very important for the industry as a whole to be honest that living next to [a data center] is not an ideal situation,” said Caleb Max, CEO of the National Artificial Intelligence Association, a new D.C.-based trade group launched last year that represents Oracle and myriad AI companies.
Polling shows that data centers are less popular than the use of artificial intelligence overall, Max told me, so more needs to be done to communicate the benefits that come from their development – including empowering AI. “The best thing the industry could start to do is, for the people in these zip codes with the data centers, those people need to more tangibly feel the benefits of it.”
Many in the data center development space are responding quickly to these concerns. Companies are clearly trying to get out ahead on energy, with the biggest example arriving this week from Microsoft, which pledged to pay more for the electricity it uses to power its data centers. “It’s about balancing that demand and market with these concerns. That’s why you're seeing the industry lean in on these issues and more proactively communicating with communities,” said Dan Diorio, state policy director for the Data Center Coalition.
There’s also an effort underway to develop national guidance for data centers led by the National Electrical Manufacturers Association, the American Society of Heating, Refrigerating, and Air-Conditioning Engineers, and the Pacific Northwest National Laboratory, expected to surface publicly by this summer. Some of the guidance has already been published, such as this document on energy storage best practices, which is intended to help data centers know how to properly use solutions that can avoid diesel generators, an environmental concern in communities. But the guidance will ultimately include discussions of cooling, too, which can be a water-intensive practice.
“It’s a great example of an instance where industry is coming together and realizing there’s a need for guidance. There’s a very rapidly developing sector here that uses electricity in a fundamentally different way, that’s almost unprecedented,” Patrick Hughes, senior vice president of strategy, technical, and industry affairs for NEMA, told me in an interview Monday.
Personally, I’m unsure whether these voluntary efforts will be enough to assuage the concerns of local officials. It certainly isn’t convincing folks like Jon Green, a member of the Board of Supervisors in Johnson County, Iowa. Johnson County is a populous area, home to the University of Iowa campus, and Green told me that to date it hasn’t really gotten any interest from data center developers. But that didn’t stop the county from instituting a one-year moratorium in 2025 to block projects and give time for them to develop regulations.
I asked Green if there’s a form of responsible data center development. “I don’t know if there is, at least where they’re going to be economically feasible,” he told me. “If we say they’ve got to erect 40 wind turbines and 160 acres of solar in order to power a data center, I don’t know if when they do their cost analysis that it’ll pencil out.”
Plus a storage success near Springfield, Massachusetts, and more of the week’s biggest renewables fights.
1. Sacramento County, California – A large solar farm might go belly-up thanks to a fickle utility and fears of damage to old growth trees.
2. Hampden County, Massachusetts – The small Commonwealth city of Agawam, just outside of Springfield, is the latest site of a Massachusetts uproar over battery storage…
3. Washtenaw County, Michigan – The city of Saline southwest of Detroit is now banning data centers for at least a year – and also drafting regulations around renewable energy.
4. Dane County, Wisconsin – Another city with a fresh data center moratorium this week: Madison, home of the Wisconsin Badgers.
5. Hood County, Texas – Last but not least, I bring you one final stop on the apparent data center damnation tour: Hood County, south of the Texas city of Fort Worth.