You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Oscar-winner and El Capitan free solo-er talks to Heatmap about solar panels, fatherhood, and his new docuseries, Arctic Ascent.

In 2017, rock climber Alex Honnold went on Jimmy Kimmel Live! to promote Free Solo, the then-new documentary about his unassisted climb of Yosemite’s El Capitan. “Is there anything bigger than that?” Kimmel prompted as a closing question.
“I mean, there are technically some bigger walls in the world,” Honnold said. “But they’re in very remote places — like Greenland.”
Five years and an Oscar later, Honnold was scrambling off a boat at the base of Ingmikortilaq, a crumbly sea cliff that towers nearly 1,000 feet higher than El Cap over an iceberg-ridden fjord in eastern Greenland. His intended first ascent was the culmination of a six-week adventure across ice fields and glaciers.
This time, Honnold wasn’t alone. The Greenland expedition included two other legendary climbers, Hazel Findlay and Mikey Schaefer, as well as Aldo Kane, who provided safety and technical support; Adam Kjeldsen, a Greenlandic guide; and perhaps most surprisingly, Heïdi Sevestre, a French glaciologist who helped set up or run 16 different studies to collect data for scientists around the world.
The team’s adventure is captured in Arctic Ascent with Alex Honnold, a three-part docuseries that premieres on Hulu and Disney+ on February 5. Ahead of its release, I spoke separately with Honnold and Sevestre about the expedition, the importance of climate science, and their respective climbs. (While Sevestre, previously a non-climber, didn’t attempt Ingmikortilaq, she did scale a 1,500-foot rock face known as the Pool Wall while drilling rock cores for samples.) Our conversations have been lightly edited and condensed for clarity.
Unlike a lot of other outdoor sports like mountaineering or skiing or even surfing, rock climbing doesn’t seem as obviously imperiled by climate change. How did this become the cause you wanted to devote your time and money to?
Oh, I think climbing is more imperiled by climate change than most other sports. I mean, you’re right that maybe it’s not as impactful as to skiing, but it’s way more impactful than almost every other sport.
You’re still in the mountains. Wildfire smoke every summer — that’s now a thing that just didn’t exist when I was growing up climbing. Even if you’re just rock climbing, you’re always approaching in the mountains. Nowadays, most couloirs [chutes between rocks that might typically fill with snow in the winter] have melted out. Stable snow fields that have existed for generations are now melted out. Piles of teetering rubble are falling down mountainsides, and also a lot of routes are just less safe. The mountainsides themselves are collapsing, like the Aiguille du Midi gondola in Chamonix. Which, actually — one of the things we were installing in Greenland were temperature sensors on one of the cliffs, related to studying how rocks thaw out, what happens when permafrost melts. I would say that climate change is still incredibly relevant for us.
Your way into climate was through your climbing, then?
A big part of my environmental awareness in general is because of the experiences I’ve had outdoors as a climber. But long before [the Greenland expedition], I started a foundation in 2012 where I’ve been supporting community solar projects around the world and caring about the transition to renewables. I’ve cared about climate change forever. I think this was just the first opportunity to do it on mainstream television.
I saw that Arctic Ascent purchased carbon credits to compensate for production emissions. I was hoping you could talk about that decision, and how else you might have minimized your impact on the expedition, since I don’t think people are aware of how energy intensive film and TV productions can be.
In this case, other than the obvious expense of all of our flights getting to Greenland, we had a relatively low carbon footprint because we were camping the whole time. I think you’re right that a lot of television is kind of insane when you have all the RVs and everyone’s in their own thing and there’s hair and makeup and it’s just crazy with, like, a million cameras. In this case, it was basically a bunch of people camping on a glacier for six weeks, so it’s not quite the same as a Hollywood set.
But yeah, I think the idea to purchase offsets was the obvious bare minimum for a project like this. If you’re going to be doing a whole story around sea level rise, you have to do something.
The Honnold Foundation focuses on bringing solar panels to vulnerable communities, but these are fairly small projects compared to the expansive solar farms we might more traditionally think of. Why did you choose to focus your time on something that might seem, at least on paper, to be of a smaller scale than, say, electrifying the grid?
It’s a totally fair question. In 2012, it wasn’t totally clear that the world was transitioning to renewables at all. It seemed like it was inevitable, but you’re never really sure — you know, back then people were into hydrogen and you’re like, “Oh, maybe we’re going to have hydrogen cars, or maybe battery electric really takes off,” blah, blah, blah. Anyway, now it seems totally clear that the world is transitioning to renewables. Within some timeframe, like 20 to 50 years, the world will be 100% renewable.
The thing is, we currently live in a world where something like a billion people don’t have access to power, and transitioning to renewables will still leave us in a world where a billion people don’t have access to power. [Editor’s note: The number of people living without electricity today is actually closer to 760 million.] As the system changes, there are so many people who are left behind. What the Honnold Foundation tries to do is find that sweet spot in helping with the transition, helping the people who are being left behind.
Part of that is just by necessity — I’m a professional rock climber, I’m not a tech billionaire. So the small-scale grants just make more sense to some extent, but they also have the biggest impact on human lives because when you do these small-scale projects, you can fundamentally change the way people live. That’s a huge impact.
I live in Las Vegas, and you see huge solar farms around the desert. It’s great; the grid is going 100% renewable. I’m into that. But realistically, the only difference it makes in most people’s lives is maybe a small change in their utility rate. Really, the people that benefit are the utility shareholders — it’s some Warren Buffett-owned utility in my case, NV Energy. That really isn’t that inspiring. This is my long rant to say that the Honnold Foundation is trying to help the humans who need it the most.
Did you get a chance to use solar panels on the Greenland expedition?
On this trip, no, because they were running a generator for production and it was charging, like, 50 batteries.
It’s funny because we did an expedition in Antarctica where we made a little climbing film as well. And on that trip, they planned to take a generator and then somebody just forgot the fuel. So we got there and we were like, “Oh, no,” and we wound up doing the whole trip off solar and it totally worked.
This was your first expedition since becoming a father. You’ve worked on the climate cause for a long time now, but I’m curious if your perspective has changed at all since your daughter June joined your family — and I know you have another daughter on the way!
Yeah, soon! No, I don’t think my perspective has changed too much. I’ve always cared about these kinds of issues. The bigger change is in the way that I spend my time. Having a family forces me to be a little bit tighter about the choices that I’m making, what expeditions I choose to go on. That makes a trip like this even more worthwhile, where you get to do great climbing and there’s a real purpose behind it, and you get to share important knowledge about things that matter.
Can you tell me a little more about the decision to bring Heïdi on board? I heard her version of the story earlier this week but I’m curious about how you found her and roped her in.
Isn’t she so amazing?
She was delightful!
That’s the thing with Heïdi. Because when you spend time with her, she just makes you care about about ice. And I don’t even like ice. It’s not my thing; I like rocks. But she made me much more knowledgeable and much more caring about that type of world.
Do you consider yourself an optimist when it comes to climate change?
I think so, which is weird because I’m optimistic despite all the data to the contrary. I understand the predictions, but there’s so much to gain. So far it’s been 20 years that I’ve been reading environmental nonfiction and we haven’t really chosen to make anything of this opportunity, but we still have this incredible opportunity to build a better world to live in, a cleaner world. We can still choose that at any point. And I just keep thinking that at some point, we’re going to choose it. You can’t keep ignoring the obvious thing forever.
How did you get involved in the Arctic Ascent expedition?
This was an absolute dream come true for me — I felt extremely lucky to get a call from the team. It is extremely challenging to go to that one remote location, one of the least studied places on Earth. But Alex, as you know, is a firm believer in the scientific work. The planets really aligned. It took about a year prior to the expedition to design the work we could do with boots on the ground.
I wanted to know what it was like to put together scientific objectives for an expedition like this. It’s a little bit unconventional because there’s a film crew and there was climbing involved.
I think it was extremely brave and extremely daring of the entire team to have the willingness to invite the scientists on board. Because not only did we have the best climbers in the world climbing in a very challenging and hostile environment, we’re also filming a series of documentaries and we have to do some of the very best possible science. So it’s not that easy! But what we did is, we took it step by step. We contacted all the universities and labs and institutions interested in data from this part of the world — and also interested in training me on how to collect this data. Because I really felt — it’s what I was thinking the whole time — I really felt like I was an astronaut on the ISS. I was the only one, and I had to do the best possible work.
We ended up with 16 different protocols to do on this expedition, so it was really major. And, you know, we worked with NASA, we worked with research institutes in Denmark, the University of Buffalo, and the University of Kansas, for example. So it was challenging but a dream come true to be trusted by the scientists.
Your first big polar expedition was actually to Greenland, back in 2011. Had you been back to the island between that research trip and this one?
I had spent a tiny bit of time — not so far in the field as East Greenland, but around the coastlines. But what I was doing there was mostly science communication with people who wanted to learn about the impacts of climate change on the Greenland ice sheets. So I hadn’t been on a big research expedition to Greenland since 2011. And the changes were absolutely massive.
That was going to be my question!
The Arctic is one of the fastest-warming places on Earth. Everything that’s taking place in Greenland is impacting the rest of the world, so I felt that we had a duty and a mission — on top of climbing these incredible monoliths, we actually had to bring something back to society.
In the series, you talk about how remote and understudied East Greenland is by climate scientists. But during the expedition, you were being assisted by support helicopters and by boats. So why aren’t expeditions like this one happening all the time? Is it an issue of funding or a lack of scientific interest in this particular region?
It’s crazy to think of how little data we have from the ground [in East Greenland]. We have satellites — we have as many satellites as we want. But it is very tricky to get there. What you have to understand about this place is that for 10 months of the year, there is sea ice blocking access to this field. Ten months of the year! So the rest of the year — yes, we can access by plane, we can access by boat, but it’s very expensive.
What was great about this project is that we had in mind, “How can we lower our carbon footprint?” This is why, for example, we worked with fishermen who had boats from a nearby village at the entrance of the field. It was very important for us to use local means of transportation. Of course, we had to use helicopters every now and then, because there was no other way. But it’s remote, it’s expensive, and on top of everything, it is extremely hostile.
Oh my gosh, the bashing you get when you go there! This is something that we really wanted to show in the series — how powerful nature can be. And climate change is accelerating and making these changes even more violent. So I think it’s important to show that when nature starts to be a bit destabilized, it can get very angry.
There was a paper in Nature that came out earlier this month that said nearly every glacier in Greenland has thinned or retreated over the past few decades. In the series, there’s a bit of good news, which is that the Daugaard-Jensen Glacier is a little bit more stable than you were anticipating. Do you have any insight into why that might be?
What’s so great is, it keeps part of the mystery! I like that we still don’t totally understand what’s taking place.
The scientists we’ve been working with have told us — this is a bit technical — but it has to do with the shape of the bedrock. It seems that the glacier is resting on a little ridge that might be holding everything together. This might be the reason why the glacier is still stable; also, this part of Greenland still receives a lot of snow.
But we’ve seen some cracks in this perfect picture. You know, the NASA float [that we launched on the expedition] has told us that the temperature of the water in the fjords is increasing. So it’s not all perfect. The environment around it is definitely changing, but it seems that it has some advantages.
Were there any findings from the expedition that you are particularly excited about?
All of them! But science takes a very long time, so at the moment, we’re still waiting on a lot of the results from these different protocols. But what I want to share is something that is very simple: Greenland holds a lot of ice, and if we lose the ice, it means 6 to 7 meters of sea-level rise. As you saw in the paper that was published by Nature, at the moment, Greenland is losing 30 million tons of ice per hour. What is crucial to understand is that every action we conduct back home to reduce our carbon footprints and to preserve our climate helps Greenland and helps our collective future. All this data will help us to prepare for the things to come.
Last question: Have you taken up rock climbing?
I’ll be honest: no. I think I’m a bit traumatized in a good way. I think I needed a minute to recover. But I really want to start climbing again — now, with the launch of this series, I know that it’ll be my mission for this year. Otherwise, I think Alex and Hazel will never forgive me.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Batteries can only get so small so fast. But there’s more than one way to get weight out of an electric car.
Batteries are the bugaboo. We know that. Electric cars are, at some level, just giant batteries on wheels, and building those big units cheaply enough is the key to making EVs truly cost-competitive with fossil fuel-burning trucks and cars and SUVs.
But that isn’t the end of the story. As automakers struggle to lower the cost to build their vehicles amid a turbulent time for EVs in America, they’re looking for any way to shave off a little expense. The target of late? Plain old wires.
Last month, when General Motors had to brace its investors for billions in losses related to curtailing its EV efforts and shifting factories back to combustion, it outlined cost-saving measures meant to get things moving in the right direction. While much of the focus was on using battery chemistries like lithium ion phosphate, otherwise known as LFP, that are cheaper to build, CEO Mary Barra noted that the engineers on every one of the company’s EVs were working “to take out costs beyond the battery,” of which cutting wiring will be a part.
They are not alone in this obsession. Coming into a do-or-die year with the arrival of the R2 SUV, Rivian said it had figured out how to cut two miles of wires out of the design, a coup that also cuts 44 pounds from the vehicle’s weight (this is still a 5,000-pound EV, but every bit counts). Ford has become obsessed with figuring out smarter and cheaper ways for its money-hemorrhaging EV division to build cars; the company admitted, after tearing down a Tesla Model 3 to look inside, that its Mustang Mach-E EV had a mile of extra and possibly unnecessary wiring compared to its rival.
A bunch of wires sounds like an awfully mundane concern for cars so sophisticated. But while every foot adds cost and weight, the obsession with stripping out wiring is about something deeper — the broad move to redefine how cars are designed and built.
It so happens that the age of the electric vehicle is also the age of the software-defined car. Although automobiles were born as purely mechanical devices, code has been creeping in for decades, and software is needed to manage the computerized fuel injection systems and on-board diagnostic systems that explain why your Check Engine light is illuminated. Tesla took this idea to extremes when it routed the driver’s entire user interface through a giant central touchscreen. This was the car built like a phone, enabling software updates and new features to be rolled out years after someone bought the car.
As Tesla ruled the EV industry in the 2010s, the smartphone-on-wheels philosophy spread. But it requires a lot of computing infrastructure to run a car on software, which adds complexity and weight. That’s why carmakers have spent so much time in the past couple of years talking about wires. Their challenge (among many) is to simplify an EV’s production without sacrificing any of its capability.
Consider what Rivian is attempting to do with the R2. As InsideEVs explains, electric cars have exploded in their need for electronic control units, the embedded computing brains that control various systems. Some models now need more than 100 to manage all the software-defined components. Rivian managed to sink the number to just seven, and thus shave even more cost off the R2, through a “zonal” scheme where the ECUs control all the systems located in their particular region of the vehicle.
Compared to an older, centralized system that connects all the components via long wires, the savings are remarkable. As Rivian chief executive RJ Scaringe posted on X: “The R2 harness improves massively over the R1 Gen 2 harness. Building on the backbone of our network architecture and zonal ECUs, we focused on ease of install in the plant and overall simplification through integrated design — less wires, less clips and far fewer splices!”
Legacy automakers, meanwhile, are racing to catch up. Even those that have built decent-selling quality EVs to date have not come close to matching the software sophistication of Tesla and Rivian. But they have begun to see the light — not just about fancy iPads in the cockpit, but also about how the software-defined vehicle can help them to run their factories in a simpler and cheaper way.
How those companies approach the software-defined car will define them in the years to come. By 2028, GM hopes to have finished its next-gen software platform that “will unite every major system from propulsion to infotainment and safety on a single, high-speed compute core,” according to Barra. The hope is that this approach not only cuts down on wiring and simplifies manufacturing, but also makes Chevys and Cadillacs more easily updatable and better-equipped for the self-driving future.
In that sense, it’s not about the wires. It’s about all the trends that have come to dominate electric vehicles — affordability, functionality, and autonomy — colliding head-on.
Europeans have been “snow farming” for ages. Now the U.S. is finally starting to catch on.
February 2015 was the snowiest month in Boston’s history. Over 28 days, the city received a debilitating 64.8 inches of snow; plows ran around the clock, eventually covering a distance equivalent to “almost 12 trips around the Equator.” Much of that plowed snow ended up in the city’s Seaport District, piled into a massive 75-foot-tall mountain that didn’t melt until July.
The Seaport District slush pile was one of 11 such “snow farms” established around Boston that winter, a cutesy term for a place that is essentially a dumpsite for snow plows. But though Bostonians reviled the pile — “Our nightmare is finally over!” the Massachusetts governor tweeted once it melted, an event that occasioned multiple headlines — the science behind snow farming might be the key to the continuation of the Winter Olympics in a warming world.
The number of cities capable of hosting the Winter Games is shrinking due to climate change. Of 93 currently viable host locations, only 52 will still have reliable winter conditions by the 2050s, researchers found back in 2024. In fact, over the 70 years since Cortina d’Ampezzo first hosted the Olympic Games in 1956, February temperatures in the Dolomites have warmed by 6.4 degrees Fahrenheit, according to Climate Central, a nonprofit climate research and communications group. Italian organizers are expected to produce more than 3 million cubic yards of artificial snow this year to make up for Mother Nature’s shortfall.
But just a few miles down the road from Bormio — the Olympic venue for the men’s Alpine skiing events as well as the debut of ski mountaineering next week — is the satellite venue of Santa Caterina di Valfurva, which hasn’t struggled nearly as much this year when it comes to usable snow. That’s because it is one of several European ski areas that have begun using snow farming to their advantage.
Like Ruka in Finland and Saas-Fee in Switzerland, Santa Caterina plows its snow each spring into what is essentially a more intentional version of the Great Boston Snow Pile. Using patented tarps and siding created by a Finnish company called Snow Secure, the facilities cover the snow … and then wait. As spring turns to summer, the pile shrinks, not because it’s melting but because it’s becoming denser, reducing the air between the individual snowflakes. In combination with the pile’s reduced surface area, this makes the snow cold and insulated enough that not even a sunny day will cause significant melt-off. (Neil DeGrasse Tyson once likened the phenomenon to trying to cook an entire potato with a lighter; successfully raising the inner temperature of a dense snowball, much less a gigantic snow pile, requires more heat.)
Shockingly little snow melts during storage. Snow Secure reports a melt rate of 8% to 20% on piles that can be 50,000 cubic meters in size, or the equivalent of about 20 Olympic swimming pools. When autumn eventually returns, ski areas can uncover their piles of farmed snow and spread it across a desired slope or trail using snowcats, specialized groomers that break up and evenly distribute the surface. For Santa Caterina, the goal was to store enough to make a nearly 2-mile-long cross-country trail — no need to wait for the first significant snowfall of the season, which creeps later and later every year.
“In many places, November used to be more like a winter month,” Antti Lauslahti, the CEO of Snow Secure, told me. “Now it’s more like a late-autumn month; it’s quite warm and unpredictable. Having that extra few weeks is significant. When you cannot open by Thanksgiving or Christmas, you can lose 20% to 30% of the annual turnover.”
Though the concept of snow farming is not new — Lauslahti told me the idea stems from the Finnish tradition of storing snow over the summer beneath wood chips, once a cheap byproduct of the local logging industry — the company's polystyrene mat technology, which helps to reduce summer melt, is. Now that the technique is patented, Snow Secure has begun expanding into North America with a small team. The venture could prove lucrative: Researchers expect that by the end of the century, as many as 80% of the downhill ski areas in the U.S. will be forced to wait until after Christmas to open, potentially resulting in economic losses of up to $2 billion.
While there have been a few early adopters of snow farming in Wisconsin, Utah, and Idaho, the number of ski areas in the United States using the technique remains surprisingly low, especially given its many other upsides. In the States, the most common snow management system is the creation of artificial snow, which is typically water- and energy-intensive. Snow farming not only avoids those costs — which can also have large environmental tolls, particularly in the water-strapped West — but the super-dense snow farming produces is “really ideal” for something like the Race Centre at Canada’s Sun Peaks Resort, where top athletes train. Downhill racers “want that packed, harder, faster snow,” Christina Antoniak, the area’s director of brand and communications, told me of the success of the inaugural season of snow farming at Sun Peaks. “That’s exactly what stored snow produced for that facility.”
The returns are greatest for small ski areas, which are also the most vulnerable to climate change. While the technology is an investment — Antoniak ballparked that Sun Peaks spent around $185,000 on Snow Secure’s siding — the money goes further at a smaller park. At somewhere like Park City Mountain in Utah, stored snow would cover only a small portion of the area’s 140 miles of skiable routes. But it can make a major difference for an area down the road like the Soldier Hollow Nordic Center, which has a more modest 20 miles of cross-country trails.
In fact, the 2025-2026 winter season will be the Nordic Center’s first using Snow Secure’s technology. Luke Bodensteiner, the area’s general manager and chief of sport, told me that alpine ski areas are “all very curious to see how our project goes. There is a lot of attention on what we do, and if it works out satisfactorily, we might see them move into it.”
Ensuring a reliable start to the ski season is no small thing for a local economy; jobs and travel plans rely on an area being open when it says it will be. But for the Soldier Hollow Nordic Center, the stakes are even higher: The area is one of the planned host venues of the 2034 Salt Lake City Winter Games. “Based on historical weather patterns, our goal is to be able to make all the snow that we need for the entire Olympic trail system in two weeks,” Bodensteiner said, adding, “We envision having four or five of these snow piles around the venue in the summer before the Olympic Games, just to guarantee — in a worst case scenario — that we’ve got snow on the venue.”
Antoniak, at Canada’s Sun Peaks, also told me that their area has been a bit of a “guinea pig” when it comes to snow farming. “A lot of ski areas have had their eyes on Sun Peaks and how [snow farming is] working here,” she told me. “And we’re happy to have those conversations with them, because this is something that gives the entire industry some more resiliency.”
Of course, the physics behind snow farming has a downside, too. The same science saving winter sports is also why that giant, dirty pile of plowed snow outside your building isn’t going anywhere anytime soon.
Current conditions: A train of three storms is set to pummel Southern California with flooding rain and up to 9 inches mountain snow • Cyclone Gezani just killed at least four people in Mozambique after leaving close to 60 dead in Madagascar • Temperatures in the southern Indian state of Kerala are on track to eclipse 100 degrees Fahrenheit.
What a difference two years makes. In April 2024, New York announced plans to open a fifth offshore wind solicitation, this time with a faster timeline and $200 million from the state to support the establishment of a turbine supply chain. Seven months later, at least four developers, including Germany’s RWE and the Danish wind giant Orsted, submitted bids. But as the Trump administration launched a war against offshore wind, developers withdrew their bids. On Friday, Albany formally canceled the auction. In a statement, the state government said the reversal was due to “federal actions disrupting the offshore wind market and instilling significant uncertainty into offshore wind project development.” That doesn’t mean offshore wind is kaput. As I wrote last week, Orsted’s projects are back on track after its most recent court victory against the White House’s stop-work orders. Equinor's Empire Wind, as Heatmap’s Jael Holzman wrote last month, is cruising to completion. If numbers developers shared with Canary Media are to be believed, the few offshore wind turbines already spinning on the East Coast actually churned out power more than half the time during the recent cold snap, reaching capacity factors typically associated with natural gas plants. That would be a big success. But that success may need the political winds to shift before it can be translated into more projects.

President Donald Trump’s “drill, baby, drill” isn’t moving American oil extractors, whose output is set to contract this year amid a global glut keeping prices low. But production of natural gas is set to hit a record high in 2026, and continue upward next year. The Energy Information Administration’s latest short-term energy outlook expects natural gas production to surge 2% this year to 120.8 billion cubic feet per day, from 118 billion in 2025 — then surge again next year to 122.3 billion cubic feet. Roughly 69% of the increased output is set to come from Appalachia, Louisiana’s Haynesville area, and the Texas Permian regions. Still, a lot of that gas is flowing to liquified natural gas exports, which Heatmap’s Matthew Zeitlin explained could raise prices.
The U.S. nuclear industry has yet to prove that microreactors can pencil out without the economies of scale that a big traditional reactor achieves. But two of the leading contenders in the race to commercialize the technology just crossed major milestones. On Friday, Amazon-backed X-energy received a license from the Nuclear Regulatory Commission to begin commercial production of reactor fuel high-assay low-enriched uranium, the rare but potent material that’s enriched up to four times higher than traditional reactor fuel. Due to its higher enrichment levels, HALEU, pronounced HAY-loo, requires facilities rated to the NRC’s Category II levels. While the U.S. has Category I facilities that handle low-enriched uranium and Category III facilities that manage the high-grade stuff made for the military, the country has not had a Category II site in operation. Once completed, the X-energy facility will be the first, in addition to being the first new commercial fuel producer licensed by the NRC in more than half a century.
On Sunday, the U.S. government airlifted a reactor for the first time. The Department of Defense transported one of Valar Atomics’ 5-megawatt microreactors via a C-17 from March Air Reserve Base in California to Hill Air Force Base in Utah. From there, the California-based startup’s reactor will go to the Utah Rafael Energy Lab in Orangeville, Utah, for testing. In a series of posts on X, Isaiah Taylor, Valar’s founder, called the event “a groundbreaking unlock for the American warfighters.” His company’s reactor, he said, “can power 5,000 homes or sustain a brigade-scale” forward operating base.
Sign up to receive Heatmap AM in your inbox every morning:
After years of attempting to sort out new allocations from the dwindling Colorado River, negotiators from states and the federal government disbanded Friday without a plan for supplying the 40 million people who depend on its waters. Upper-basin states Colorado, Utah, Wyoming, and New Mexico have so far resisted cutting water usage when lower-basin states California, Arizona, and Nevada are, as The Guardian put it, “responsible for creating the deficit” between supply and demand. But the lower-basin states said they had already agreed to substantial cuts and wanted the northern states to share in the burden. The disagreement has created an impasse for months; negotiators blew through deadlines in November and January to come up with a solution. Calling for “unprecedented cuts” that he himself described as “unbelievably harsh,” Brad Udall, senior water and climate research scientist at Colorado State University’s Colorado Water Center, said: “Mother Nature is not going to bail us out.”
In a statement Friday, Secretary of the Interior Doug Burgum described “negotiations efforts” as “productive” and said his agency would step in to provide guidelines to the states by October.
Europe’s “regulatory rigidity risks undermining the momentum of the hydrogen economy. That, at least, is the assessment of French President Emmanuel Macron, whose government has pumped tens of billions of euros into the clean-burning fuel and promoted the concept of “pink hydrogen” made with nuclear electricity as the solution that will make energy technology take off. Speaking at what Hydrogen Insight called “a high-level gathering of CEOs and European political leaders,” Macron, who is term-limited in next year’s presidential election, said European rules are “a crazy thing.” Green hydrogen, the version of the fuel made with renewable electricity, remains dogged by high prices that the chief executive of the Spanish oil company Repsol said recently will only come down once electricity rates decrease. The Dutch government, meanwhile, just announced plans to pump 8 billion euros, roughly $9.4 billion, into green hydrogen.
Kazakhstan is bringing back its tigers. The vast Central Asian nation’s tiger reintroduction program achieved record results in reforesting an area across the Ili River Delta and Southern Balkhash region, planting more than 37,000 seedlings and cuttings on an area spanning nearly 24 acres. The government planted roughly 30,000 narrow-leaf oleaster seedlings, 5,000 willow cuttings, and about 2,000 turanga trees, once called a “relic” of the Kazakh desert. Once the forests come back, the government plans to eventually reintroduce tigers, which died out in the 1950s.