Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Economy

The New Ideology Behind the Government’s $10 Billion Bet on ‘Hubs’

How Republicans and Democrats came together to seed new industries in specific places

President Biden.
Heatmap Illustration/Getty Images

The Biden administration announced on Friday that it would spend up to $7 billion to create seven new “hydrogen hubs” across the country. These hubs will house large-scale industrial facilities specializing in producing, moving, and using hydrogen, a potent gas that could play a range of roles in a climate-friendly economy. Hydrogen, which does not emit carbon pollution when burned, could decarbonize long-distance trucking, energy storage, chemical making, and heavy industry.

These hubs will, as my colleague Emily Pontecorvo writes, become important public-private laboratories for the use of clean hydrogen. They will complement tens of billions of dollars in tax credits that could soon support a clean hydrogen industry.

Although these hubs are a key part of the president’s climate strategy, they are not created by his signature climate law, the Inflation Reduction Act. They were funded, instead, by the bipartisan infrastructure law, which passed in December 2021.

That same legislation also spent $3.5 billion to create new direct air capture hubs, big regional facilities that will deploy technology capable of sucking carbon dioxide from the ambient air. In August, the Energy Department awarded the first of those hubs to Texas and Louisiana.

It matters that these two “hub”-based programs command some measure of bipartisan support. It signals, first, that these programs are likely to endure even if the GOP takes the White House next year. It shows, too, that Republicans in Congress — and especially in the Senate, where 19 Republicans voted for the infrastructure law — can back climate policy under some conditions. (Even if those conditions might involve having to negotiate with a Democratic president.)

It certainly helps, too, that hydrogen and direct air capture are two potentially climate-friendly industries where the fossil fuel industry could play the largest role. The chief executive of Occidental Petroleum, a fossil-fuel company that is building one of the first air-capture hubs, has even argued that carbon removal technology could allow the oil and gas industry to operate for decades to come.

But the bipartisan support for these programs reveal something else, too — a deeper change in how America’s leaders think about governing and growing the economy. Most coverage of the hubs has elided the fact that they’re called “hubs,” almost treating the word “hub” as a synonym for “big new economic thing.” But the hubs are called “hubs” for a reason; don’t snub the hubness of the hubs. The hubs are meant to do more than create new experimental industrial facilities at taxpayer expense. They are meant to seed specific industries in specific places, creating new centers of gravity that will allow new regional economies to form.

The idea behind the hubs goes back more than a decade. In 2010, a team of researchers at the Massachusetts Institute of Technology looked around the U.S. economy and realized something strange: Although many of the world’s most innovative and profitable companies did their R&D, design, and distribution in America, very few of them made their products here. Think of Apple, for instance, whose iPhones then bore the inscription: “Designed in California. Assembled in China.”

Why was that?, the team asked. That arrangement distorted the economy, depriving working-class people of the benefits of new industries. It also seemed unsustainable. “Without production capabilities in the U.S., can we generate new growth and jobs?” asked Suzanne Berger, a political science professor who led the project. “Can we even sustain innovation without manufacturing capabilities in the U.S.?”

The U.S. could not go on like this forever, they concluded, because innovation in design was inseparable from innovation in production. Many industries — including biotech, material science, and clean energy — required engineers to constantly flit back and forth from the factory floor to the lab, bringing problems encountered by assembly technicians back to the design engineers.

But this tight circuit of design, production, and design again didn’t just happen within influential companies, like Ford, AT&T, and 3M. One takeaway from their report, Making in America, is that innovation emerges from skilled communities of practice located in specific places. When a big company opens a factory or R&D lab somewhere, an ecosystem grows up around it. Small- and medium-sized manufacturers with their own expertise cluster around that big firm, because they can make a living by selling their own goods and services to that firm (or its competitors).

Speaking to a Senate committee in 2013, Berger described what happened when her team visited the laboratory of Tonio Buonassisi, a mechanical engineer then building a new type of solar cell. Buonassisi’s lab in Cambridge, Massachusetts, was full of cutting-edge equipment that had been made by an instrument company located only a couple hours away.

“Much of [that] machinery had been made in close collaboration between the lab and the instrument companies as they handed ideas and components and prototypes back and forth,” Berger said. “Used for the first time in the lab, these tools were now being marketed to commercial solar companies.”

At the time, the domestic solar industry was collapsing, and it worried Buonassisi. If American solar-cell makers went out of business, then it would put his specialty toolmaker out of business, too — and slow down or possibly end his own research agenda. “Even in a fragmented global economy with instant connection over the Internet to anywhere in the world,” Berger said, the close geographic ties “that connect research in its earliest stages to production in its final phases remain vital.”

When you start looking, you see endless evidence of these ecologies of production, these skilled communities of practice, everywhere. Silicon Valley once earned its name because it housed a booming semiconductor manufacturing industry nurtured by the Defense Department. A chip conductor at Intel could access a specialty lens maker, or metallurgist, or chemicals maker only a short drive away; even outside of work, these people met at bars and socialized in the same places. Soon, that semiconductor ecosystem gave rise to other adjacent businesses: a software industry that could write code for those semiconductors, and a personal computing industry that could make semiconductors useful to mass-market consumers; those industries gave rise to today’s tech industry.

Nor was that region’s power solely rooted in its technicians. The banks near Silicon Valley grew so familiar with the hardware and software industries that they could finance companies there more easily and cheaply than other financial institutions. One of those institutions even named itself after Silicon Valley.

Today, America has relatively few of these innovative clusters left. The point of the hub-based strategy is to build them back. The idea of the hubs isn’t only that America will get seven new large-scale facilities that produce or process hydrogen, or four new facilities that suck carbon out of the air. The object is that these big facilities will anchor new skilled communities of practice, the same way that, say, a deep-sea volcanic vent gives rise to an entire colorful food chain. President Biden might be announcing a new Philadelphia-based hydrogen hub today, but we won’t know if that hub will be a success until it’s scuttling with metallurgists and chemists and financiers and specialty electricians in 10 years.

The hydrogen and direct air capture facilities, in other words, are meant to grow into true hubs — hubs of engineering, hubs of finance, hubs of innovation. The government, having recognized that new industries and industrial centers will not form naturally, is now trying to seed them intentionally.

That is far from the laissez faire approach to innovation once embraced by policymakers. And it matters that Democrats and Republicans alike have embraced it in the infrastructure law: It reveals the growing belief that free markets alone will not keep America at the top of the global economy. Today’s announcement might be the first time you hear about a new federally supported “hub.” It probably won’t be the last.

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Electric Vehicles

The New Electric Cars Are Boring

Give the people what they want — big, family-friendly EVs.

Boredom and EVs.
Heatmap Illustration/Getty Images, Apple

The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.

I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.

Keep reading...Show less
Green
Climate

AM Briefing: Hurricane Season Winds Down

On storm damages, EV tax credits, and Black Friday

The Huge Economic Toll of the 2024 Hurricane Season
Heatmap Illustration/Getty Images

Current conditions: Parts of southwest France that were freezing last week are now experiencing record high temperatures • Forecasters are monitoring a storm system that could become Australia’s first named tropical cyclone of this season • The Colorado Rockies could get several feet of snow today and tomorrow.

THE TOP FIVE

1. Damages from 2024 hurricane season estimated at $500 billion

This year’s Atlantic hurricane season caused an estimated $500 billion in damage and economic losses, according to AccuWeather. “For perspective, this would equate to nearly 2% of the nation’s gross domestic product,” said AccuWeather Chief Meteorologist Jon Porter. The figure accounts for long-term economic impacts including job losses, medical costs, drops in tourism, and recovery expenses. “The combination of extremely warm water temperatures, a shift toward a La Niña pattern and favorable conditions for development created the perfect storm for what AccuWeather experts called ‘a supercharged hurricane season,’” said AccuWeather lead hurricane expert Alex DaSilva. “This was an exceptionally powerful and destructive year for hurricanes in America, despite an unusual and historic lull during the climatological peak of the season.”

Keep reading...Show less
Yellow
Climate

First Comes the Hurricane. Then Comes the Fire.

How Hurricane Helene is still putting the Southeast at risk.

Hurricanes and wildfire.
Heatmap Illustration/Getty Images

Less than two months after Hurricane Helene cut a historically devastating course up into the southeastern U.S. from Florida’s Big Bend, drenching a wide swath of states with 20 trillion gallons of rainfall in just five days, experts are warning of another potential threat. The National Interagency Fire Center’s forecast of fire-risk conditions for the coming months has the footprint of Helene highlighted in red, with the heightened concern stretching into the new year.

While the flip from intense precipitation to wildfire warnings might seem strange, experts say it speaks to the weather whiplash we’re now seeing regularly. “What we expect from climate change is this layering of weather extremes creating really dangerous situations,” Robert Scheller, a professor of forestry and environmental resources at North Carolina State University, explained to me.

Keep reading...Show less
Blue