You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Investors are only just now starting to digest what the proposed cuts will mean, especially for energy storage.
Is Wall Street too sanguine about the House of Representatives’ proposal to gut the Inflation Reduction Act? When the House Ways and Means Committee unveiled its language on the law on Monday — phasing out tax credits, implementing strict restrictions on business relationships with Chinese companies, and altering when projects are eligible for credits — some investors responded to the cutbacks by driving up the prices of some clean energy stocks.
The residential solar company Sunrun traded up on Tuesday by 8.6%, and the American solar manufacturer First Solar was up over 22%. (Stock movements on Monday were largely in response to the pause of the U.S.-China trade war, also announced that morning.)
“The early drafts of a Republican tax and spending bill weren’t as bad for renewables as feared,” wrote Barron’s. Morgan Stanley analysts used the same language — “not as bad as feared” — in a note to clients on the text. “Industry was bracing for way worse,” Don Schneider, the deputy head of public policy for Piper Sandler and a former Republican staffer on the Ways and Means Committee, wrote on X.
While many analysts — and, to be honest, journalists at Heatmap — have issued dire warnings about how the various provisions of the Ways and Means language could together make much of the IRA essentially impossible to use, even before the tax credits phase out, investors on Wall Street and in Washington seem to have shrugged them off. Some level of cutting was all but inevitable, and “not as bad as it could have been” is reason enough to celebrate — plus there’s also “it’ll probably change, anyway.”
There’s something to this. A group of moderate Republicans criticized the language on Wednesday as too restrictive, specifically citing changes to three overarching features of the tax credits: when projects would be eligible for tax credits, where companies are able to source components and materials, and whether companies are allowed to freely buy and sell tax credits generated by their projects. (Wouldn’t you know it, these complaints largely echo what Heatmap has written in the past few days.)
In the Senate, meanwhile, Republican Kevin Cramer of North Dakota, said that the text as written would be too damaging to advanced nuclear and enhanced geothermal generation. The phase-out timelines in the Ways and Means language are “too short for truly new technologies,” Cramer told Politico.
Pavan Venkatakrishnan, an infrastructure fellow at the Institute for Progress, told me that he expects the bill to evolve in a way to meet the concerns of Senate Republicans like Cramer.
“Given considerations both political and procedural, like the more flexible reconciliation instructions Senate Finance is afforded relative to House Ways and Means and the disproportionate impact current text entails for technologies Republicans traditionally favor, like nuclear, geothermal, and hydropower, I think it’s fair to say that this text will change over the coming weeks,” he said.
Finally, days after the Ways and Means committee made its thinking public, Wall Street seems to be catching on to the implications. The new foreign entities of concern rules pose a particularly huge danger to the renewable energy sector, according to Jefferies analyst Julien Dumoulin-Smith, and especially to energy storage, which would be the key provider of reliability on a renewable-heavy grid. Energy storage looks to account for almost 30% of new generator additions this year, according to the Energy Information Administration.
“We think the market got it wrong for storage,” Dumoulin-Smith wrote in a note to clients. The market has yet to “digest and fully interpret the implications of proposed tariff and tax policy, which as currently written do not bode well for storage,” he said. The foreign sourcing language “is more restrictive than initially thought, with some industry stakeholders calling the proposal a near repeal on IRA.”
The storage supply chain is intensely entangled with China. Many companies, including Tesla, have been forced to disclose to investors just how reliant they are on China for their storage businesses.
China alone accounted for 70% of battery imports in 2024, according to industry analysts at BloombergNEF, over $14 billion worth. About a quarter of the metals used in battery manufacturing — especially graphite — came from China, BNEF figures show. For specific battery chemistry like lithium iron phosphate, which is popular for stationary storage products, the supply chain is essentially 100% Chinese.
Wall Street revenue and profit estimates “do not adequately capture the extent of risks” facing the U.S. storage industry, Dumoulin-Smith wrote. The storage company Fluence’s stock fell around 1.5% today, and is down over 5.5% since close of trading on Monday, as the market began to digest the House language.
It is possible that the foreign sourcing rules will be loosened and phase-outs for tax credits and transferability lengthened, Venkatakrishnan told me, but not in a way that would endanger the overall structure of the bill. Cuts to the Inflation Reduction Act are a key source of revenue for the Republican bill-writers to ensure as many of the tax cuts they want can fit within the budgetary scope they’ve given themselves.
“Any adjustments will be made with an eye toward ensuring budgetary offsets are sufficient to enable success of the broader enterprise,” Venkatakrishnan said. In other words, as much as some lawmakers may want to see these tax credits preserved, ultimately, they’ve got to pass a bill to ensure Trump’s tax cuts stick around.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Read our guide to making better, more informed choices in the fight against climate change here.
Here at Heatmap, we write a lot about decarbonization — that is, the process of transitioning the global economy away from fossil fuels and toward long-term sustainable technologies for generating energy. What we don’t usually write about is what those technologies actually do. Sure, solar panels convert energy from the sun into electricity — but how, exactly? Why do wind turbines have to be that tall? What’s the difference between carbon capture, carbon offsets, and carbon removal, and why does it matter?
So today, we’re bringing you Climate 101, a primer on some of the key technologies of the energy transition. In this series, we’ll cover everything from what makes silicon a perfect material for solar panels (and computer chips), to what’s going on inside a lithium-ion battery, to the difference between advanced and enhanced geothermal.
There’s something here for everyone, whether you’re already an industry expert or merely climate curious. For instance, did you know that contemporary 17th century readers might have understood Don Quixote’s famous “tilting at windmills” to be an expression of NIMYBism? I sure didn’t! But I do now that I’ve read Jeva Lange’s 101 guide to wind energy.
That said, I’d like to extend an especial welcome to those who’ve come here feeling lost in the climate conversation and looking for a way to make sense of it. All of us at Heatmap have been there at some point or another, and we know how confusing — even scary — it can be. The constant drumbeat of news about heatwaves and floods and net-zero this and parts per million that is a lot to take in. We hope this information will help you start to see the bigger picture — because the sooner you do, the sooner you can join the transition, yourself.
Without further ado, here’s your Climate 101 syllabus:
Once you feel ready to go deeper, here are some more Heatmap stories to check out:
The basics on the world’s fastest-growing source of renewable energy.
Solar power is already the backbone of the energy transition. But while the basic technology has been around for decades, in more recent years, installations have proceeded at a record pace. In the United States, solar capacity has grown at an average annual rate of 28% over the past decade. Over a longer timeline, the growth is even more extraordinary — from an stalled capacity base of under 1 gigawatt with virtually no utility-scale solar in 2010, to over 60 gigawatts of utility-scale solar in 2020, and almost 175 gigawatts today. Solar is the fastest-growing source of renewable energy in both the U.S. and the world.
There are some drawbacks to solar, of course. The sun, famously, does not always shine, nor does it illuminate all places on Earth to an equal extent. Placing solar where it’s sunniest can sometimes mean more expense and complexity to connect to the grid. But combined with batteries — especially as energy storage systems develop beyond the four hours of storage offered by existing lithium-ion technology — solar power could be the core of a decarbonized grid.
Solar power can be thought of as a kind of cousin of the semiconductors that power all digital technology. As Princeton energy systems professor and Heatmap contributor Jesse Jenkins has explained, certain materials allow for electrons to flow more easily between molecules, carrying an electrical charge. On one end of the spectrum are your classic conductors, like copper, which are used in transmission lines; on the other end are insulators, like rubber, which limit electrical charges.
In between on that spectrum are semiconductors, which require some amount of energy to be used as a conductor. In the computing context these are used to make transistors, and in the energy context they’re used to make — you guessed it — solar panels.
In a solar panel, the semiconductor material absorbs heat and light from the sun, allowing electrons to flow. The best materials for solar panels, explained Jenkins, have just the right properties so that when they absorb light, all of that energy is used to get the electrons flowing and not turned into wasteful heat. Silicon fits the bill.
When you layer silicon with other materials, you can force the electrons to flow in a single direction consistently; add on a conductive material to siphon off those subatomic particles, and voilà, you’ve got direct current. Combine a bunch of these layers, and you’ve got a photovoltaic panel.
Globally, solar generation capacity stood at over 2,100 terawatt-hours in 2024, according to Our World in Data and the Energy Institute, growing by more than a quarter from the previous year. A huge portion of that growth has been in China, which has almost half of the world’s total installed solar capacity. Installations there have grown at around 40% per year in the past decade.
Solar is still a relatively small share of total electricity generation, however, let alone all energy usage, which includes sectors like transportation and industry. Solar is the sixth largest producer of electricity in the world, behind coal, gas, hydropower, nuclear power, and wind. It’s the fourth largest non-carbon-emitting generation source and the third largest renewable power source, after wind and hydropower.
Solar has taken off in the United States, too, where utility-scale installations make up almost 4% of all electricity generated.
While that doesn’t seem like much, overall growth in generation has been tremendous. In 2024, solar hit just over 300 terawatt-hours of generation in the U.S., compared to about 240 terawatt-hours in 2023 and just under 30 in 2014.
Looking forward, there’s even more solar installation planned. Developers plan to add some 63 gigawatts of capacity to the grid this year, following an additional 30 gigawatts in 2024, making up just over half of the total planned capacity additions, according to Energy information Administration.
Solar is cheap compared to other energy sources, and especially other renewable sources. The world has a lot of practice dealing with silicon at industrial scale, and China especially has rapidly advanced manufacturing processes for photovoltaic cells. Once the solar panel is manufactured, it’s relatively simple to install compared to a wind turbine. And compared to a gas- or coal-fired power plant, the fuel is free.
From 1975 to 2022, solar module costs fell from over $100 per watt to below $0.50, according to Our World In Data. From 2012 to 2022 alone, costs fell by about 90%, and have fallen by “around 20% every time the global cumulative capacity doubles,” writes OWID analyst Hannah Ritchie. Much of the decline in cost has been attributed to “Wright’s Law,” which says that unit costs fall as production increases.
While construction costs have flat-lined or slightly increased recently due to supply chain issues and overall inflation, the overall trend is one of cost declines, with solar construction costs declining from around $3,700 per kilowatt-hour in 2013, to around $1,600 in 2023.
There are solar panels at extreme latitudes — Alaska, for instance, has seen solar growth in the past few years. But there are obvious challenges with the low amount of sunlight for large stretches of the year. At higher latitudes, irradiance, a measure of how much power is transmitted from the sun to a specific area, is lower (although that also varies based on climate and elevation). Then there are also more day-to-day issues, such as the effect of snow and ice on panels, which can cause issues in turning sunlight into power (they literally block the panel from the sun). High latitudes can see wild swings in solar generation: In Tromso, in northern Norway, solar generation in summer months can be three times as high as the annual average, with a stretch of literally zero production in December and January.
While many Nordic countries have been leaders in decarbonizing their electricity grids, they tend not to rely on solar in that project. In Sweden, nuclear and hydropower are its largest non-carbon-emitting fuel sources for electricity; in Norway, electricity comes almost exclusively from hydropower.
There has been some kind of policy support for solar power since 1978, when the Energy Tax Act provided tax credits for solar power investment. Since then, the investment tax credit has been the workhorse of American solar policy. The tax credit as it was first established was worth 10% of the system’s upfront cost “for business energy property and equipment using energy resources other than oil or natural gas,” according to the Congressional Research Service.
But above that baseline consistency has been a fair amount of higher-level turmoil, especially recently. The Energy Policy Act of 2005 kicked up the value of that credit to 30% through 2007; Congress kept extending that timeline, with the ITC eventually scheduled to come down to 10% for utility-scale and zero for residential projects by 2024.
Then came the 2022 Inflation Reduction Act, which re-instituted the 30% investment tax credit, with bonuses for domestic manufacturing and installing solar in designated “energy communities,” which were supposed to be areas traditionally economically dependent on fossil fuels. The tax then transitioned into a “technology neutral” investment tax credit that applied across non-carbon-emitting energy sources, including solar, beginning in 2024.
This year, Congress overhauled the tax incentives for solar (and wind) yet again. Under the One Big Beautiful Bill Act, signed in July, solar projects have to start construction by July 2026, or complete construction by the end of 2027 to qualify for the tax credit. The Internal Revenue Service later tightened up its definition of what it means for a project to start construction, emphasizing continuing actual physical construction activities as opposed to upfront expenditures, which could imperil future solar development.
At the same time, the Trump administration is applying a vise to renewables projects on public lands and for which the federal government plays a role in permitting. Renewable industry trade groups have said that the highest levels of the Department of Interior are obstructing permitting for solar projects on public lands, which are now subject to a much closer level of review than non-renewable energy projects.
Massachusetts Institute of Technology Researchers attributed the falling cost of solar this century to “scale economies.” Much of this scale has been achieved in China, which dominates the market for solar panel production, especially for export, even though much of the technology was developed in the United States.
At this point, however, the cost of an actual solar system is increasingly made up of “soft costs” like labor and permitting, at least in the United States. According to data from the National Renewables Energy Laboratory, a utility-scale system costs $1.20 per watt, of which soft costs make up a third, $0.40. Ten years ago, a utility-scale system cost $2.90 per watt, of which soft costs was $1.20, or less than half.
Beyond working to make existing technology even cheaper, there are other materials-based advances that promise higher efficiency for solar panels.
The most prominent is “perovskite,” the name for a group of compounds with similar structures that absorb certain frequencies of light particularly well and, when stacked with silicon, can enable more output for a given amount of solar radiation. Perovskite cells have seen measured efficiencies upwards of 34% when combined with silicon, whereas typical solar cells top out around 20%.
The issue with perovskite is that it’s not particularly durable, partially due to weaker chemical bonds within the layers of the cell. It’s also more expensive than existing solar, although much of that comes down inefficient manufacturing processes. If those problems can be solved, perovskite could promise more output for the same level of soft costs as silicon-based solar panels.