You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Fact-checking a Trump-inspired fear.
As someone on the “will this thing kill me” beat, I was paying close attention when the former president of the United States recently expressed concern about electric-powered boats — apparently, the new aquatic twist on his electric car rant. “Let’s say your boat goes down and I’m sitting on top of this big powerful battery and the boat’s going down,” Donald Trump mused to a group of supporters in the landlocked state of Iowa. “Do I get electrocuted?”
Trump then dramatically upped the stakes by imagining the sinking electric boat was also being circled by a shark. “So I have a choice of electrocution or shark,” he went on. “You know what I’m going to take? Electrocution. I will take electrocution every single time.”
I wanted to find out if it was actually possible for Trump to be electrocuted and/or eaten by a shark (you know, hypothetically). It was a question that inspired many related, obsessive searches: What about if you drive an electric vehicle into a lake — would that electrocute you? Are first responders afraid to help people in submerged EVs? Would they leave you inside to die?!
Like I said, I can be a little morbid.
Below, I attempt to sort electrocution fact from electrocution fiction, with a few detours thrown in.
People have been using electricity to power their boats for over 120 years. In fact, until the high-energy storage density of oil became obvious around the turn of the century, electric boats actually enjoyed a bit of a heyday. (RIP to the electric canoe).
Moreover, if you’ve ever been on a marine vessel with any more sophistication than a rowboat, it probably had a battery and an electrical system on board, even if it wasn’t powered by an electric motor. Standard 12-volt marine batteries are used for everything from starting the main engine to running the lights, radio, or a trolling motor on board.
The modern iteration of the fully electrified boat movement is still in its relative infancy and faces some big challenges. But the short version is, we’ve been using electricity at sea for a long time and have gotten pretty good at not electrocuting ourselves. And the potential electrocution problems that do exist usually aren’t exclusive to high-voltage electric boats, but gas-powered ones as well.
First of all, battery packs on electric boats are designed to be watertight — duh, because they’re
on a boat. Believe it or not, electric boat makers have taken into account the fact that their products could, in a worst-case scenario, end up underwater. A spokesperson for Arc Boat Company, a flashy new player in the electric boat space, pointed me to their FAQ which explains that “our fault table — a list of possible points of failure and what to do about each one — is hundreds of lines long, meaning we’ve thought about, tested, and planned for every scenario you might encounter on and off the water.” (This seems like a job I could be good at.)
In fact, all the electric boat manufacturers I was in touch with said they meet a waterproofing standard that is either at, or just below, what is required for a submarine. The high-voltage batteries are additionally kept in “puncture-resistant shells,” so even if the boat somehow got completely mangled, the battery won’t just be openly exposed to the water.
Still, you definitely don’t want to sit on an exposed “big powerful battery,” as Trump suggests in his scenario, since you could theoretically interrupt the closed loop of a DC battery’s electrical circuit and get shocked. But just being on an electric boat that is sinking does not inherently expose you to electrocution danger.
Electric shock drowning is caused by faulty wiring at a dock or a marina leaking 120-volt alternating current into the water. That electricity can potentially kill a nearby swimmer on its own, or cause them to become incapacitated and drown.
This overwhelmingly happens in lakes and rivers, since human bodies are a better conductor of electricity than fresh water but not saltwater. “In saltwater, the human body only slows electricity down, so most of it will go around a swimmer on its way back to ground unless the swimmer grabs hold of something — like a propeller or a swim ladder — that’s electrified,” BoatUS, a marine insurance company and safety advocacy group, explains in its publication Seaworthy. “In fresh water, the current gets ‘stuck’ trying to return to its source and generates voltage gradients that will take a shortcut through the human body.”
While it’s possible that a poorly maintained electric boat charging station could cause this sort of leak, it’s not a danger exclusive to the electric boat world; gas-powered boats hooked to shore power kill people every year, as well. Regardless, this is why you should never, ever swim around boat docks, especially at lakes.
If you are worried about sea life getting electrocuted by a high-voltage shipwreck, don’t be. When a battery is underwater, its current will flow into the water between its two terminals. This is bad for the battery (it’ll cause it to rapidly discharge) but you don’t have to worry about the entire ocean or lake getting filled with charge and electrocuting everything in it; high-voltage batteries are powerful but not nearly that powerful. If a shark is in the immediate vicinity of the battery — like, trying to eat it — it might potentially get hurt, but this whole premise is also starting to get absurd with this many “what ifs” piled on top of each other. (Really, the environmental hazard of a leaking lithium battery on the seafloor is probably the greater cause for concern.)
You’ll have bigger problems than electrocution!
Like electric boats, EV batteries are obsessively insulated and the cars are designed with a number of fail-safes to isolate the battery in the case of an accident. Again, the people who thought up these things have already considered the worst-case scenarios. (Plus, getting sued for repeatedly electrocuting anyone who drives through a puddle is not good business).
What’s important to understand is that unlike the 12-volt batteries used in gas-powered cars, which are harmlessly grounded to the car’s large chassis, high-voltage systems in EVs use a floating ground, which helps prevent you from being electrocuted if the car becomes submerged. “It’s not grounded chassis — there is no return path for a vehicle that has been submerged to return that charge,” Joe McLaine, a safety engineer with General Motors, told me. “And if there [are] any faults or anomalies with the high voltage system, and it’s operating in normal functioning ranges, it’s going to shut off anyway.”
Yes — and it’s also true of driving in the rain, or washing your car, or charging in a downpour.
Trying to drive an EV through deep water is not a great idea for a number of very good reasons, but fear of electrocution isn’t one of them. The most likely scenario is that the water will cause any less-well-insulated electronic components to short out, causing the car to die — which is what happened when Motor Mythbusterstried to drive a Nissan Leaf through a water-filled trench.
Of course, gas-powered cars don’t love driving in floods, either, and there is some reason to believe that EVs might actually do better in flood conditions than their counterparts.
Back in 2016, Elon Musk tweeted that the “Model S floats well enough to turn it into a boat for short periods of time.” Just searching the words “EV” or “Tesla” and “flood” or “boat mode” will lead you to tons of videos of EVs plowing through deep bodies of water.
Don’t … do this. Most flood-related deaths occur in cars, and this fact doesn’t change just because your vehicle has a plug. Additionally, just because an EV drove through a flood successfully in a short video doesn’t mean there was no lasting damage from the water (which, it should be added, isn’t covered under warranty).
Florida’s State Fire Marshal’s Office reported there were at least 21 EV battery fires in the aftermath of Hurricane Ian in 2022. This is specifically a phenomenon caused by saltwater storm surge: When the car eventually dries out, the salt residue can remain behind on the battery, creating conductive “bridges” that lead to short circuits and fires.
This is still fairly rare: “The odds that your electric battery pack is on fire in Florida are about the same odds of you getting struck by lightning,” Joe Britton, the executive director of the Zero Emission Transportation Association, told Utility Drive. To be safe, FEMA recommends that any EVs flooded by saltwater be moved at least 50 feet away from any structures, other vehicles, or combustibles. And if you are expecting storm surge, move your EV preemptively to higher ground.
Tesla echoes this advice: “As with any electric vehicle, if your Tesla has been exposed to flooding, extreme weather events, or has otherwise been submerged in water (especially in salt water), treat it as if it’s been in an accident and contact your insurance company for support,” the company writes in its user manual.
“That is not true,” McLaine, the safety engineer with General Motors, told me. McLaine is responsible for GM’s Battery Electric Vehicle First Responder Training program, which has educated over 5,000 first- and second-responders in 25 different locations across the U.S. and Canada, and is focused on dispelling some of the rumors and misinformation around electric cars.
In addition to trainings like GM’s, a growing familiarity with the thousands of EVs now on the road has also made first responders more confident when responding to bad accidents. Orange cables are used to easily identify high-voltage components, which are placed “in areas and locations in the vehicle in which first responders typically wouldn’t have access to anyway,” McLaine explained.
First responders are trained to disable the high-voltage systems in an EV just like they would snip the cut loops around a 12-volt battery in a gas-powered vehicle accident. Additionally, most manufacturers make it extremely easy to find individual emergency response guides for their vehicles online, and there are various hotlines available for first- and second-responders when EV-related questions arise.
What First Responders Do in an EV Accidentwww.youtube.com
As for first responders handling cars that have been fully or partially submerged: Pretty much all of the emergency response documents I could find stated some version of “A submerged electric vehicle does not have a high voltage potential on the metal vehicle body, and is safe to touch” (this one specifically comes from the papers for the RAV 4 EV). Though first responders need to be careful with cutting into crushed cars, there are no shocking surprises when it comes to simply handling a submerged EV.
Are you kidding me? Electrocution would at least be quick! Trump got that part right: In this round of “would you rather,” you should take electrocution every time.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
And more of this week’s top renewable energy fights across the country.
1. Otsego County, Michigan – The Mitten State is proving just how hard it can be to build a solar project in wooded areas. Especially once Fox News gets involved.
2. Atlantic County, New Jersey – Opponents of offshore wind in Atlantic City are trying to undo an ordinance allowing construction of transmission cables that would connect the Atlantic Shores offshore wind project to the grid.
3. Benton County, Washington – Sorry Scout Clean Energy, but the Yakima Nation is coming for Horse Heaven.
Here’s what else we’re watching right now…
In Connecticut, officials have withdrawn from Vineyard Wind 2 — leading to the project being indefinitely shelved.
In Indiana, Invenergy just got a rejection from Marshall County for special use of agricultural lands.
In Kansas, residents in Dickinson County are filing legal action against county commissioners who approved Enel’s Hope Ridge wind project.
In Kentucky, a solar project was actually approved for once – this time for the East Kentucky Power Cooperative.
In North Carolina, Davidson County is getting a solar moratorium.
In Pennsylvania, the town of Unity rejected a solar project. Elsewhere in the state, the developer of the Newton 1 solar project is appealing their denial.
In South Carolina, a state appeals court has upheld the rejection of a 2,300 acre solar project proposed by Coastal Pine Solar.
In Washington State, Yakima County looks like it’ll keep its solar moratorium in place.
And more of this week’s top policy news around renewables.
1. Trump’s Big Promise – Our nation’s incoming president is now saying he’ll ban all wind projects on Day 1, an expansion of his previous promise to stop only offshore wind.
2. The Big Nuclear Lawsuit – Texas and Utah are suing to kill the Nuclear Regulatory Commission’s authority to license small modular reactors.
3. Biden’s parting words – The Biden administration has finished its long-awaited guidance for the IRA’s tech-neutral electricity credit (which barely changed) and hydrogen production credit.
A conversation with J. Timmons Roberts, executive director of Brown University’s Climate Social Science Network
This week’s interview is with Brown University professor J. Timmons Roberts. Those of you familiar with the fight over offshore wind may not know Roberts by name, but you’re definitely familiar with his work: He and his students have spearheaded some of the most impactful research conducted on anti-offshore wind opposition networks. This work is a must-read for anyone who wants to best understand how the anti-renewables movement functions and why it may be difficult to stop it from winning out.
So with Trump 2.0 on the verge of banning offshore wind outright, I decided to ask Roberts what he thinks developers should be paying attention to at this moment. The following interview has been lightly edited for clarity.
Is the anti-renewables movement a political force the country needs to reckon with?
Absolutely. In my opinion it’s been unfortunate for the environmental groups, the wind development, the government officials, climate scientists – they’ve been unwilling to engage directly with those groups. They want to keep a very positive message talking about the great things that come with wind and solar. And they’ve really left the field open as a result.
I think that as these claims sit there unrefuted and naive people – I don’t mean naive in a negative sense but people who don’t know much about this issue – are only hearing the negative spin about renewables. It’s a big problem.
When you say renewables developers aren’t interacting here – are you telling me the wind industry is just letting these people run roughshod?
I’ve seen no direct refutation in those anti-wind Facebook groups, and there’s very few environmentalists or others. People are quite afraid to go in there.
But even just generally. This vast network you’ve tracked – have you seen a similar kind of counter mobilization on the part of those who want to build these wind farms offshore?
There’s some mobilization. There’s something called the New England for Offshore Wind coalition. There’s some university programs. There’s some other oceanographic groups, things like that.
My observation is that they’re mostly staff organizations and they’re very cautious. They’re trying to work as a coalition. And they’re going as slow as their most cautious member.
As someone who has researched these networks, what are you watching for in the coming year? Under the first year of Trump 2.0?
Yeah I mean, channeling my optimistic and Midwestern dad, my thought is that there may be an overstepping by the Trump administration and by some of these activists. The lack of viable alternative pathways forward and almost anti-climate approaches these groups are now a part of can backfire for them. Folks may say, why would I want to be supportive of your group if you’re basically undermining everything I believe in?
What do you think developers should know about the research you have done into these networks?
I think it's important for deciding bodies and the public, the media and so on, to know who they’re hearing when they hear voices at a public hearing or in a congressional field hearing. Who are the people representing? Whose voice are they advancing?
It’s important for these actors that want to advance action on climate change and renewables to know what strategies and the tactics are being used and also know about the connections.
One of the things you pointed out in your research is that, yes, there are dark money groups involved in this movement and there are outside figures involved, but a lot of this sometimes is just one person posts something to the internet and then another person posts something to the internet.
Does that make things harder when it comes to addressing the anti-renewables movement?
Absolutely. Social media’s really been devastating for developing science and informed, rational public policymaking. It’s so easy to create a conspiracy and false information and very slanted, partial information to shoot holes at something as big as getting us off of fossil fuels.
Our position has developed as we understand that indeed these are not just astro-turf groups created by some far away corporation but there are legitimate concerns – like fishing, where most of it is based on certainty – and then there are these sensationalized claims that drive fears. That fear is real. And it’s unfortunate.
Anything else you’d really like to tell our readers?
I didn’t really choose this topic. I feel like it really got me. It was me and four students sitting in my conference room down the hall and I said, have you heard about this group that just started here in Rhode Island that’s making these claims we should investigate? And students were super excited about it and have really been the leaders.