You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Fact-checking a Trump-inspired fear.
As someone on the “will this thing kill me” beat, I was paying close attention when the former president of the United States recently expressed concern about electric-powered boats — apparently, the new aquatic twist on his electric car rant. “Let’s say your boat goes down and I’m sitting on top of this big powerful battery and the boat’s going down,” Donald Trump mused to a group of supporters in the landlocked state of Iowa. “Do I get electrocuted?”
Trump then dramatically upped the stakes by imagining the sinking electric boat was also being circled by a shark. “So I have a choice of electrocution or shark,” he went on. “You know what I’m going to take? Electrocution. I will take electrocution every single time.”
I wanted to find out if it was actually possible for Trump to be electrocuted and/or eaten by a shark (you know, hypothetically). It was a question that inspired many related, obsessive searches: What about if you drive an electric vehicle into a lake — would that electrocute you? Are first responders afraid to help people in submerged EVs? Would they leave you inside to die?!
Like I said, I can be a little morbid.
Below, I attempt to sort electrocution fact from electrocution fiction, with a few detours thrown in.
People have been using electricity to power their boats for over 120 years. In fact, until the high-energy storage density of oil became obvious around the turn of the century, electric boats actually enjoyed a bit of a heyday. (RIP to the electric canoe).
Moreover, if you’ve ever been on a marine vessel with any more sophistication than a rowboat, it probably had a battery and an electrical system on board, even if it wasn’t powered by an electric motor. Standard 12-volt marine batteries are used for everything from starting the main engine to running the lights, radio, or a trolling motor on board.
The modern iteration of the fully electrified boat movement is still in its relative infancy and faces some big challenges. But the short version is, we’ve been using electricity at sea for a long time and have gotten pretty good at not electrocuting ourselves. And the potential electrocution problems that do exist usually aren’t exclusive to high-voltage electric boats, but gas-powered ones as well.
First of all, battery packs on electric boats are designed to be watertight — duh, because they’re
on a boat. Believe it or not, electric boat makers have taken into account the fact that their products could, in a worst-case scenario, end up underwater. A spokesperson for Arc Boat Company, a flashy new player in the electric boat space, pointed me to their FAQ which explains that “our fault table — a list of possible points of failure and what to do about each one — is hundreds of lines long, meaning we’ve thought about, tested, and planned for every scenario you might encounter on and off the water.” (This seems like a job I could be good at.)
In fact, all the electric boat manufacturers I was in touch with said they meet a waterproofing standard that is either at, or just below, what is required for a submarine. The high-voltage batteries are additionally kept in “puncture-resistant shells,” so even if the boat somehow got completely mangled, the battery won’t just be openly exposed to the water.
Still, you definitely don’t want to sit on an exposed “big powerful battery,” as Trump suggests in his scenario, since you could theoretically interrupt the closed loop of a DC battery’s electrical circuit and get shocked. But just being on an electric boat that is sinking does not inherently expose you to electrocution danger.
Electric shock drowning is caused by faulty wiring at a dock or a marina leaking 120-volt alternating current into the water. That electricity can potentially kill a nearby swimmer on its own, or cause them to become incapacitated and drown.
This overwhelmingly happens in lakes and rivers, since human bodies are a better conductor of electricity than fresh water but not saltwater. “In saltwater, the human body only slows electricity down, so most of it will go around a swimmer on its way back to ground unless the swimmer grabs hold of something — like a propeller or a swim ladder — that’s electrified,” BoatUS, a marine insurance company and safety advocacy group, explains in its publication Seaworthy. “In fresh water, the current gets ‘stuck’ trying to return to its source and generates voltage gradients that will take a shortcut through the human body.”
While it’s possible that a poorly maintained electric boat charging station could cause this sort of leak, it’s not a danger exclusive to the electric boat world; gas-powered boats hooked to shore power kill people every year, as well. Regardless, this is why you should never, ever swim around boat docks, especially at lakes.
If you are worried about sea life getting electrocuted by a high-voltage shipwreck, don’t be. When a battery is underwater, its current will flow into the water between its two terminals. This is bad for the battery (it’ll cause it to rapidly discharge) but you don’t have to worry about the entire ocean or lake getting filled with charge and electrocuting everything in it; high-voltage batteries are powerful but not nearly that powerful. If a shark is in the immediate vicinity of the battery — like, trying to eat it — it might potentially get hurt, but this whole premise is also starting to get absurd with this many “what ifs” piled on top of each other. (Really, the environmental hazard of a leaking lithium battery on the seafloor is probably the greater cause for concern.)
You’ll have bigger problems than electrocution!
Like electric boats, EV batteries are obsessively insulated and the cars are designed with a number of fail-safes to isolate the battery in the case of an accident. Again, the people who thought up these things have already considered the worst-case scenarios. (Plus, getting sued for repeatedly electrocuting anyone who drives through a puddle is not good business).
What’s important to understand is that unlike the 12-volt batteries used in gas-powered cars, which are harmlessly grounded to the car’s large chassis, high-voltage systems in EVs use a floating ground, which helps prevent you from being electrocuted if the car becomes submerged. “It’s not grounded chassis — there is no return path for a vehicle that has been submerged to return that charge,” Joe McLaine, a safety engineer with General Motors, told me. “And if there [are] any faults or anomalies with the high voltage system, and it’s operating in normal functioning ranges, it’s going to shut off anyway.”
Yes — and it’s also true of driving in the rain, or washing your car, or charging in a downpour.
Trying to drive an EV through deep water is not a great idea for a number of very good reasons, but fear of electrocution isn’t one of them. The most likely scenario is that the water will cause any less-well-insulated electronic components to short out, causing the car to die — which is what happened when Motor Mythbusters tried to drive a Nissan Leaf through a water-filled trench.
Of course, gas-powered cars don’t love driving in floods, either, and there is some reason to believe that EVs might actually do better in flood conditions than their counterparts.
Back in 2016, Elon Musk tweeted that the “Model S floats well enough to turn it into a boat for short periods of time.” Just searching the words “EV” or “Tesla” and “flood” or “boat mode” will lead you to tons of videos of EVs plowing through deep bodies of water.
Don’t … do this. Most flood-related deaths occur in cars, and this fact doesn’t change just because your vehicle has a plug. Additionally, just because an EV drove through a flood successfully in a short video doesn’t mean there was no lasting damage from the water (which, it should be added, isn’t covered under warranty).
Florida’s State Fire Marshal’s Office reported there were at least 21 EV battery fires in the aftermath of Hurricane Ian in 2022. This is specifically a phenomenon caused by saltwater storm surge: When the car eventually dries out, the salt residue can remain behind on the battery, creating conductive “bridges” that lead to short circuits and fires.
This is still fairly rare: “The odds that your electric battery pack is on fire in Florida are about the same odds of you getting struck by lightning,” Joe Britton, the executive director of the Zero Emission Transportation Association, told Utility Drive. To be safe, FEMA recommends that any EVs flooded by saltwater be moved at least 50 feet away from any structures, other vehicles, or combustibles. And if you are expecting storm surge, move your EV preemptively to higher ground.
Tesla echoes this advice: “As with any electric vehicle, if your Tesla has been exposed to flooding, extreme weather events, or has otherwise been submerged in water (especially in salt water), treat it as if it’s been in an accident and contact your insurance company for support,” the company writes in its user manual.
“That is not true,” McLaine, the safety engineer with General Motors, told me. McLaine is responsible for GM’s Battery Electric Vehicle First Responder Training program, which has educated over 5,000 first- and second-responders in 25 different locations across the U.S. and Canada, and is focused on dispelling some of the rumors and misinformation around electric cars.
In addition to trainings like GM’s, a growing familiarity with the thousands of EVs now on the road has also made first responders more confident when responding to bad accidents. Orange cables are used to easily identify high-voltage components, which are placed “in areas and locations in the vehicle in which first responders typically wouldn’t have access to anyway,” McLaine explained.
First responders are trained to disable the high-voltage systems in an EV just like they would snip the cut loops around a 12-volt battery in a gas-powered vehicle accident. Additionally, most manufacturers make it extremely easy to find individual emergency response guides for their vehicles online, and there are various hotlines available for first- and second-responders when EV-related questions arise.
What First Responders Do in an EV Accidentwww.youtube.com
As for first responders handling cars that have been fully or partially submerged: Pretty much all of the emergency response documents I could find stated some version of “A submerged electric vehicle does not have a high voltage potential on the metal vehicle body, and is safe to touch” (this one specifically comes from the papers for the RAV 4 EV). Though first responders need to be careful with cutting into crushed cars, there are no shocking surprises when it comes to simply handling a submerged EV.
Are you kidding me? Electrocution would at least be quick! Trump got that part right: In this round of “would you rather,” you should take electrocution every time.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On FERC’s ‘disastrous misstep,’ the World Court’s climate ruling, and 127 SMRs
Current conditions: West African countries including Guinea-Bissau, Guinea-Conakry, Senegal and The Gambia are facing flash flooding from heavy rainfall • The southwestern corner of New Mexico is suffering “exceptional” drought, the highest possible level in the U.S. Drought Monitor. • Already roasting in excessive heat, Des Moines, Iowa, is bracing for thunderstorms.
The Department of Energy canceled a nearly $5 billion loan guarantee for the Grain Belt Express, a transmission project designed to move wind power from Kansas to the industrial upper Midwest. After more than a decade of development, the power line won bipartisan support and secured $4.9 billion in federal financing late last year to fund the first phase of the project, running from Ford County in Kansas to Callaway County in Missouri.
As Heatmap’s Matthew Zeitlin explained, the project eventually drew the ire of Missouri Senator Josh Hawley, who recently stepped up his attacks in the hopes that a more friendly administration could help scrap the project. The transmission line’s developer, Invenergy, told Heatmap in a statement that “a privately financed Grain Belt Express transmission superhighway will advance President Trump’s agenda of American energy and technology dominance.”
The microreactor startup Oklo inked a deal with Liberty Energy, the fracking giant where Secretary of Energy Chris Wright served as chief executive before entering government. Liberty was already an early investor in Oklo, and Wright served on the nuclear company’s board. But the new deal is a strategic partnership with a plan to deploy Liberty’s gas equipment alongside Oklo’s reactors, mirroring similar pairings that other small modular reactor developers have promoted.
Oklo is among 127 small modular reactor designs currently under development worldwide, according to a new tally from the Nuclear Energy Agency at the Organisation for Economic Co-operation and Development, the 38-member club of rich countries. Of those designs, 51 are in pre-licensing or licensing processes, and 85 are in active discussion between SMR developers and site owners. Just seven are either operating or under construction.
The Federal Energy Regulatory Commission approved fast-track interconnection processes proposed by the Midcontinent Independent System Operator and the Southwest Power Pool. The new processes will allow power plants to sidestep the standard reviews for a grid hookup. Gas-fired power plants are “likely to be the main beneficiary of the fast-track processes, with standalone batteries also potentially being included,” Utility Dive reported. The American Clean Power Association, the biggest renewable energy lobby, called the decision “a dangerous misstep.”
Southern California’s landmark rule to spur the electrification of certain boilers and water heaters survived a major court challenge. A federal court last week upheld the first-in-the-nation regulation that applies to light-industrial and commercial boilers, steam generators, process heaters, residential pool heaters and tankless water heaters. The ruling, which only applies to the 17 million people in large parts of Los Angeles and its surrounding suburbs, could “help reenergize efforts around the country to replace fossil-fuel-burning equipment with electric heat pumps and other clean technologies,” Canary Media’s Maria Gallucci wrote.
Heatmap’s Emily Pontecorvo reported earlier this week on an effort in Newton, Massachusetts to beat back new gas pipelines block by block. But overall, the fight for electrification has recently faced repeated setbacks. In 2023, a federal court struck down the northern California city of Berkeley’s pioneering ban on new gas hookups, which was replicated in cities across the country. Last year, gas utilities staged something of a coup at the quasi-governmental organization that writes the building codes used in nearly every state.
Children stand outside a church destroyed in a cyclone in Vanuatu.Mario Tama/Getty Images
In a historic decision on Wednesday morning, the International Court of Justice ruled that countries must act on climate change. While non-binding, the verdict from the United Nations’ high court was dubbed “the biggest climate case in history,” as it established the first international legal precedent of a nation state’s responsibility to curb planet-heating emissions.
The tiny South Pacific island republic of Vanuatu called the ruling a “milestone in the fight for climate justice” and vowed to “take the ICJ ruling back to the United Nations General Assembly, and pursue a resolution that will support implementation of this decision,” said Vanuatuan climate minister Ralph Regenvanu. He anticipated opposition from Washington. “Even as fossil fuel expansion continues under the U.S.’s influence, along with the loss of climate finance and technology transfer, and the lack of climate ambition following the U.S.’s withdrawal from the Paris Agreement,” he said, “major polluters — past and present — cannot continue to act with impunity and treat developing countries as sacrifice zones to further feed corporate greed.”
Researchers at Japan’s Shinshu University have demonstrated for the first time that a new eco-friendly plastic made from microbes safely decomposes in deep ocean conditions
“This research addresses one of the most critical limitations of current bioplastics—their lack of biodegradability in marine environments,” said Professor Seiichi Taguchi at the Shinshu’s Institute for Aqua Regeneration. “The study provides a pathway for safer alternatives to conventional plastics and supports the transition to a circular bioeconomy.”
NextEra CEO John Ketchum projected serenity during the company’s earnings call Wednesday.
The business of renewable energy development in the United States is the business of NextEra. The company’s renewable division is one of the country’s largest and most sophisticated, with almost 30 gigawatts in its project backlog — including 3.2 gigawatts added in the past three months.
NextEra’s financial results and outlook for the future can be a guide to how the sector is thinking — or wants people to think it’s thinking — about the state of the development landscape. Now especially, that landscape looks confusing and contradictory, with power demand increasing sharply alongside hostility to wind and solar development.
The way NextEra sees it, NextEra will come through fine. But many other — especially many other smaller — players may struggle.
“Bottom line, America needs more electricity, not less,” NextEra Chief Executive John Ketchum told analysts during the company’s earnings presentation Wednesday.
“America needs it now, not just in the future. We are firmly aligned with the administration’s goal to unleash American energy dominance. And to do so, we need all of the electrons we can get on the grid. There’s truly no time to wait.”
That alignment may be one way, however. From sunsetting tax credits to ordering enhanced reviews of wind and solar projects by federal regulators, the Trump administration has made it clear that it does not see wind and solar as part of its energy strategy.
The rhetoric coming from Washington hasn’t been particularly constructive, either, no matter how often renewable energy companies try to label their work as part and parcel of an “energy dominance” agenda. Just in the past few weeks, Trump has claimed that China has “very, very few” wind farms (in fact it has very, very many), and Secretary of Energy Chris Wright called wind and solar a “parasite on the grid.”
NextEra is not unaware of the tone and policy emanating from the administration. The company issued a new risk disclosure, first noticed by analysts at Jefferies, saying that its guidance on future performance assumes “no changes to governmental policies or incentives, including continued applicability of existing Internal Revenue Service tax credit safe harbor guidance,” i.e. that it can “commence construction” the way it always has, by following existing IRS guidance.
Although that would be awfully nice, it may not be the case for much longer. Soon after signing the One Big Beautiful Bill Act, President Trump issued an executive order calling for “new and revised” tax guidance “to ensure that policies concerning the ‘beginning of construction’ are not circumvented, including by preventing the artificial acceleration or manipulation of eligibility and by restricting the use of broad safe harbors unless a substantial portion of a subject facility has been built.”
It doesn’t take a terribly close reading to intuit that Trump wants to narrow the window for renewables developers to claim tax credits even beyond what Congress has already done. According to conservative members of Congress who wanted the tax credits to phase out even sooner, the president was merely fulfilling a promise he’d made to win their vote.
Ketchum at least projected serenity about the safe harbor situation, telling analysts that the definition of construction has been understood “for well over a decade,” that it “is informed by longstanding Treasury Department guidance,” and that the OBBBA’s language “definition is consistent with the settled meeting.”
He also noted that NextEra had “made significant financial commitments over the last few years, including in the first half of 2025, to begin construction under these rules that were in effect at the time those commitments were made,” i.e. before the bill was signed.
“We believe that we’ve begun construction on a sufficient number of projects to cover our development expectations through 2029,” Ketchum continued, adding that the company has determined it will be eligible for tax credits based on “our belief as to what the statute provides based on our experience in this industry over the last couple of decades.”
If anything, Ketchum suggested, NextEra might be advantaged by the harsh deadlines for commencing construction (July 4, 2026) or being placed in service (the end of 2027) in the new law. “It comes down to who’s safe harbor, right?” Ketchum said. “We know we compete against a lot of really small developers who don’t have the balance sheet, the construction financing to do things around safe harbor.”
In this kind of environment, Ketchum said, size matters.
“If you’re in a market where you have folks drop out, right, because they didn’t plan ahead, they don’t have the ability to get construction financing, they don’t have the ability to safe harbor. It obviously creates bigger opportunities for us.”
NextEra could be left to pick up the pieces from smaller developers that don’t make it, Ketchum said. “If we do see some small developers kind of fall away, there’ll be more projects that could potentially hit the market and come up for sale.”
It sure looks that way, at least. Democrats should start coming up with a plan.
For the first six months of President Trump’s term, the big question was about what would happen to the Inflation Reduction Act. We now have something like an answer.
President Trump’s memorably named One Big Beautiful Bill Act repealed many of the IRA’s most important clean energy tax credits, including incentives for wind, solar, and electric vehicles. And while it’s still unclear whether the Trump administration will let developers actually use the tax credits that remain on the books — especially the now-denuded credits for wind and solar — fewer “unknown unknowns” remain about what might come next.
So I’ve been trying to figure out where climate and energy policy might go from here. And one story that I keep coming back to is the flashing red lights around what could become a serious electricity affordability crisis.
It’s now widely understood that electricity demand is rising in the United States for the first time in a generation. The Energy Information Administration projects that electricity use will grow 1.7% in the next few years, after increasing by just 0.1% per year from 2005 to 2020. That growth is projected to come from new data centers, new factories, the (now) slow(er) but (still) steady adoption of electric vehicles, and population growth.
What is less well understood is how poorly the United States is prepared to match this rise in electricity demand with an equivalent increase in supply. To some degree, American electricity prices are already rising: So far this year, utilities have received or requested permission to increase customers’ bills by $29 billion, according to a July report from PowerLines, a think tank and advocacy group. That’s a large number in its own right, and it’s more than twice as much as had been approved at this time last year.
But when you look across the power system, virtually every trend is setting us up for electricity price spikes:
On top of all this, of course, the Trump administration has made it much more uncertain which new solar, wind, and battery projects will be able to secure tax credits — and with them, secure bank financing.
None of these trends alone would guarantee price increases or electricity supply constraints. But taken together, they reveal an electricity system that is coming under a variety of strains.
In the 2010s, cheap natural gas and technological advances in energy efficiency pacified much of the power system. We won’t have the same luxury this decade.
This is all going to be bad for the economy, bad for the climate, and bad for climate policy.
It’s a setback for the U.S. economy because, as President Trump somewhat alluded to in his second inaugural address, energy is a key input to virtually every other economic process, including manufacturing. But it’s especially bad for climate policy. The dominant plan to decarbonize much of the U.S. economy is to “electrify everything” — cars, appliances, home heating, and even many industrial processes. Americans will be far less eager to electrify everything if electricity is expensive.
If energy price hikes do arrive, Democrats are going to have a relatively straightforward time communicating about them in a narrow political sense. The story is just too simple: Democrats passed a law to encourage clean energy called the Inflation Reduction Act. Republicans repealed it. Energy prices inflated. QED.
That story alone might be too contrived, but the evidence we have suggests that OBBBA will raise energy bills. The REPEAT Project at Princeton University — led by Jesse Jenkins, my Shift Key podcast cohost — has a new report out projecting that the One Big Beautiful Bill Act will increase Americans’ electricity bills by $165 a year by the end of the decade. (If the law is allowed to stick around, and in the absence of intervening policies, it could raise bills by hundreds of dollars a year by the middle of next decade.)
OBBBA’s explosion of the federal deficit will make the situation worse: By expanding the deficit for such little public gain — that is, merely to memorialize earlier tax cuts, not even to make new ones — the Federal Reserve will have a more difficult time cutting interest rates in the future. That will in turn make it even more difficult for utilities and developers to finance new energy projects.
The political story will be so compelling here, I think, that Democrats will come under a lot of pressure to reinstate the wind and solar tax credits. And maybe they should do that — it could make sense as part of a larger energy or permitting deal. But stacking more solar and wind on the grid will not on its own lower people’s electricity bills.
Going into 2028, Democrats will need an actual plan to stabilize or cut electricity costs. They will need ideas about how (and whether) to speed up permitting, restructure wholesale power markets, and build new power plants in order to stabilize the power grid.
One thing that’s already clear is that in this inflationary environment, states like New York with publicly owned power authorities are able to intervene more forcefully in their own power markets than states that lack such capability. That’s because the state itself can act to build its own large-scale power plants. New York Governor Kathy Hochul recently directed the state’s power authority to build a new nuclear power plant upstate in order to grow the supply of zero-emissions electricity. Using their state own power authorities, governors in other states — or even the federal government, with an entity like the TVA— could take a similar step.
With all that said, I’ve been trying to come up with a scenario under which these price hikes will not materialize. In the late 2010s, for instance, America’s liquified natural gas exports surged essentially from zero, but domestic consumers didn’t see significant price hikes because drillers increased gas production to match the exports. Maybe that could happen again. And maybe utilities will — and this would, to be clear, be horrible for the climate — run their aging coal plants much more than they once anticipated doing.
Or maybe load growth won’t be as bad as we think. When Jesse and I spoke to Peter Freed, Meta’s former director of energy strategy, for Shift Key, he told us that the current data center boom is different from any previous buildout because of the presence of speculators. For the first time, he said, speculative data center developers are buying up prospective sites and requesting utility-scale hookups with the expectation that they will find a tenant for the data center in the future. In other words, the demand side of the electricity system is filled with an unusual amount of froth at the moment.
We also know that, more generally, the demand side of the power system is a mess. In the past few years, climate analysts have gotten used to talking about the power grid’s interconnection queue — that is, its supply side. But the demand-side queue — the process that lets new data centers, factories, and other new electricity users connect — is even more broken. In some jurisdictions, it’s little more than an Excel file that projects move up and down within as local politics requires.
We also know that one source of new demand — one planned factory or, more often, one data center — will sometimes apply to hook up to multiple states or utilities at the same time. It will get utilities to bid against each other, suss out the best construction sites and power rates, and only relatively late in the process make a final decision about where to build.
So if I were putting together a bear case for electricity demand, I would start here. Maybe aggressive data center speculators are bidding in multiple utilities, driving up projections across many states. That’s causing utilities to freak out about their supply, leading them to project the need for a lot of new investment — and, with it, a lot of electricity rate increases. But as data center speculators actually begin to build (or abandon) projects — and as some of the air inevitably comes out of the AI boom — some of this projected demand will start to evaporate. Perhaps the data centers that do get built will find ways to reduce their power usage, too.
Even this story won’t fully eliminate load growth on its own, though. Data centers make up the largest share of new electricity demand, but even then, they’re not the majority of it. The rest comes from, roughly, new factories, the slow electrification of the vehicle fleet, and new residential construction. But let’s say the One Big Beautiful Bill Act succeeds in hobbling the electric vehicle sector in the United States, many EV and battery factories get canceled, and fewer Americans buy EVs overall. Calculate in a mild recession, too, since all the AI and EV investment will be drying up.
In that world, most new sources of power demand really will be in abeyance. That’s how some of these power projections might not come true. But in most other scenarios, it’s time to hold on — and for blue-state leaders to think about how they can find cheap, zero-emissions electrons, as soon as possible.