You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Fact-checking a Trump-inspired fear.
As someone on the “will this thing kill me” beat, I was paying close attention when the former president of the United States recently expressed concern about electric-powered boats — apparently, the new aquatic twist on his electric car rant. “Let’s say your boat goes down and I’m sitting on top of this big powerful battery and the boat’s going down,” Donald Trump mused to a group of supporters in the landlocked state of Iowa. “Do I get electrocuted?”
Trump then dramatically upped the stakes by imagining the sinking electric boat was also being circled by a shark. “So I have a choice of electrocution or shark,” he went on. “You know what I’m going to take? Electrocution. I will take electrocution every single time.”
I wanted to find out if it was actually possible for Trump to be electrocuted and/or eaten by a shark (you know, hypothetically). It was a question that inspired many related, obsessive searches: What about if you drive an electric vehicle into a lake — would that electrocute you? Are first responders afraid to help people in submerged EVs? Would they leave you inside to die?!
Like I said, I can be a little morbid.
Below, I attempt to sort electrocution fact from electrocution fiction, with a few detours thrown in.
People have been using electricity to power their boats for over 120 years. In fact, until the high-energy storage density of oil became obvious around the turn of the century, electric boats actually enjoyed a bit of a heyday. (RIP to the electric canoe).
Moreover, if you’ve ever been on a marine vessel with any more sophistication than a rowboat, it probably had a battery and an electrical system on board, even if it wasn’t powered by an electric motor. Standard 12-volt marine batteries are used for everything from starting the main engine to running the lights, radio, or a trolling motor on board.
The modern iteration of the fully electrified boat movement is still in its relative infancy and faces some big challenges. But the short version is, we’ve been using electricity at sea for a long time and have gotten pretty good at not electrocuting ourselves. And the potential electrocution problems that do exist usually aren’t exclusive to high-voltage electric boats, but gas-powered ones as well.
First of all, battery packs on electric boats are designed to be watertight — duh, because they’re
on a boat. Believe it or not, electric boat makers have taken into account the fact that their products could, in a worst-case scenario, end up underwater. A spokesperson for Arc Boat Company, a flashy new player in the electric boat space, pointed me to their FAQ which explains that “our fault table — a list of possible points of failure and what to do about each one — is hundreds of lines long, meaning we’ve thought about, tested, and planned for every scenario you might encounter on and off the water.” (This seems like a job I could be good at.)
In fact, all the electric boat manufacturers I was in touch with said they meet a waterproofing standard that is either at, or just below, what is required for a submarine. The high-voltage batteries are additionally kept in “puncture-resistant shells,” so even if the boat somehow got completely mangled, the battery won’t just be openly exposed to the water.
Still, you definitely don’t want to sit on an exposed “big powerful battery,” as Trump suggests in his scenario, since you could theoretically interrupt the closed loop of a DC battery’s electrical circuit and get shocked. But just being on an electric boat that is sinking does not inherently expose you to electrocution danger.
Electric shock drowning is caused by faulty wiring at a dock or a marina leaking 120-volt alternating current into the water. That electricity can potentially kill a nearby swimmer on its own, or cause them to become incapacitated and drown.
This overwhelmingly happens in lakes and rivers, since human bodies are a better conductor of electricity than fresh water but not saltwater. “In saltwater, the human body only slows electricity down, so most of it will go around a swimmer on its way back to ground unless the swimmer grabs hold of something — like a propeller or a swim ladder — that’s electrified,” BoatUS, a marine insurance company and safety advocacy group, explains in its publication Seaworthy. “In fresh water, the current gets ‘stuck’ trying to return to its source and generates voltage gradients that will take a shortcut through the human body.”
While it’s possible that a poorly maintained electric boat charging station could cause this sort of leak, it’s not a danger exclusive to the electric boat world; gas-powered boats hooked to shore power kill people every year, as well. Regardless, this is why you should never, ever swim around boat docks, especially at lakes.
If you are worried about sea life getting electrocuted by a high-voltage shipwreck, don’t be. When a battery is underwater, its current will flow into the water between its two terminals. This is bad for the battery (it’ll cause it to rapidly discharge) but you don’t have to worry about the entire ocean or lake getting filled with charge and electrocuting everything in it; high-voltage batteries are powerful but not nearly that powerful. If a shark is in the immediate vicinity of the battery — like, trying to eat it — it might potentially get hurt, but this whole premise is also starting to get absurd with this many “what ifs” piled on top of each other. (Really, the environmental hazard of a leaking lithium battery on the seafloor is probably the greater cause for concern.)
You’ll have bigger problems than electrocution!
Like electric boats, EV batteries are obsessively insulated and the cars are designed with a number of fail-safes to isolate the battery in the case of an accident. Again, the people who thought up these things have already considered the worst-case scenarios. (Plus, getting sued for repeatedly electrocuting anyone who drives through a puddle is not good business).
What’s important to understand is that unlike the 12-volt batteries used in gas-powered cars, which are harmlessly grounded to the car’s large chassis, high-voltage systems in EVs use a floating ground, which helps prevent you from being electrocuted if the car becomes submerged. “It’s not grounded chassis — there is no return path for a vehicle that has been submerged to return that charge,” Joe McLaine, a safety engineer with General Motors, told me. “And if there [are] any faults or anomalies with the high voltage system, and it’s operating in normal functioning ranges, it’s going to shut off anyway.”
Yes — and it’s also true of driving in the rain, or washing your car, or charging in a downpour.
Trying to drive an EV through deep water is not a great idea for a number of very good reasons, but fear of electrocution isn’t one of them. The most likely scenario is that the water will cause any less-well-insulated electronic components to short out, causing the car to die — which is what happened when Motor Mythbusterstried to drive a Nissan Leaf through a water-filled trench.
Of course, gas-powered cars don’t love driving in floods, either, and there is some reason to believe that EVs might actually do better in flood conditions than their counterparts.
Back in 2016, Elon Musk tweeted that the “Model S floats well enough to turn it into a boat for short periods of time.” Just searching the words “EV” or “Tesla” and “flood” or “boat mode” will lead you to tons of videos of EVs plowing through deep bodies of water.
Don’t … do this. Most flood-related deaths occur in cars, and this fact doesn’t change just because your vehicle has a plug. Additionally, just because an EV drove through a flood successfully in a short video doesn’t mean there was no lasting damage from the water (which, it should be added, isn’t covered under warranty).
Florida’s State Fire Marshal’s Office reported there were at least 21 EV battery fires in the aftermath of Hurricane Ian in 2022. This is specifically a phenomenon caused by saltwater storm surge: When the car eventually dries out, the salt residue can remain behind on the battery, creating conductive “bridges” that lead to short circuits and fires.
This is still fairly rare: “The odds that your electric battery pack is on fire in Florida are about the same odds of you getting struck by lightning,” Joe Britton, the executive director of the Zero Emission Transportation Association, told Utility Drive. To be safe, FEMA recommends that any EVs flooded by saltwater be moved at least 50 feet away from any structures, other vehicles, or combustibles. And if you are expecting storm surge, move your EV preemptively to higher ground.
Tesla echoes this advice: “As with any electric vehicle, if your Tesla has been exposed to flooding, extreme weather events, or has otherwise been submerged in water (especially in salt water), treat it as if it’s been in an accident and contact your insurance company for support,” the company writes in its user manual.
“That is not true,” McLaine, the safety engineer with General Motors, told me. McLaine is responsible for GM’s Battery Electric Vehicle First Responder Training program, which has educated over 5,000 first- and second-responders in 25 different locations across the U.S. and Canada, and is focused on dispelling some of the rumors and misinformation around electric cars.
In addition to trainings like GM’s, a growing familiarity with the thousands of EVs now on the road has also made first responders more confident when responding to bad accidents. Orange cables are used to easily identify high-voltage components, which are placed “in areas and locations in the vehicle in which first responders typically wouldn’t have access to anyway,” McLaine explained.
First responders are trained to disable the high-voltage systems in an EV just like they would snip the cut loops around a 12-volt battery in a gas-powered vehicle accident. Additionally, most manufacturers make it extremely easy to find individual emergency response guides for their vehicles online, and there are various hotlines available for first- and second-responders when EV-related questions arise.
What First Responders Do in an EV Accidentwww.youtube.com
As for first responders handling cars that have been fully or partially submerged: Pretty much all of the emergency response documents I could find stated some version of “A submerged electric vehicle does not have a high voltage potential on the metal vehicle body, and is safe to touch” (this one specifically comes from the papers for the RAV 4 EV). Though first responders need to be careful with cutting into crushed cars, there are no shocking surprises when it comes to simply handling a submerged EV.
Are you kidding me? Electrocution would at least be quick! Trump got that part right: In this round of “would you rather,” you should take electrocution every time.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
What if, instead of maintaining old pipelines, gas utilities paid for homes to electrify?
California just hit a critical climate milestone: On September 1, Pacific Gas and Electric, the biggest utility in the state, raised natural gas rates by close to $6 due to shrinking gas demand.
I didn’t say it was a milestone worth celebrating. But experts have long warned that gas rates would go up as customers started to use less of the fossil fuel. PG&E is now forecasting enough of a drop in demand, whether because homeowners are making efficiency improvements or switching to electric appliances, that it needs to charge everyone a bit more to keep up with the cost of maintaining its pipelines.
Shortly after the rate increase went into effect, however, Governor Gavin Newsom signed a bill aimed at addressing this exact problem. The new law gives PG&E and other utilities permission to use money they would have spent to replace aging, leaky pipelines to pay for the electrification of the homes served by those pipes — as long as electrifying the homes is cheaper. Instead of investing millions of ratepayer dollars into the gas system, utilities can start to decommission parts of it, shrinking gas use and fixed costs in tandem.
PG&E actually already has the freedom to do this, and has even completed a fair number of projects. But the utility has had limited success, mainly because of an anti-discrimination law that gives building owners the right to stick with natural gas. It only takes one gas stalwart to thwart a whole neighborhood’s prospects for free electric appliances, since in order to keep delivering gas to that one household, the utility has to invest in the entire section of pipeline serving the area. A 2023 report showed that while PG&E had completed more than 100 projects, it hadn’t been able to convince clusters of customers larger than five at a time to convert.
The new law doesn’t fundamentally change the anti-discrimination rule, known as a utility’s “duty to serve,” but it does relieve PG&E and others of this duty if at least two-thirds of the homeowners served by a given section of pipeline consent to getting off gas. For now, the legislation limits utilities to executing 30 such projects. But for those 30, as long as two-thirds consent, the utility can now tell the holdouts that it is retiring the pipeline, and that they have no choice but to get on the electric bandwagon.
“If a supermajority wants it, it can move forward,” Matt Vespa, a senior attorney from Earthjustice who worked on the legislation, told me. “Which I think is probably a good place to start from. You want to have a place where there’s significant buy-in.”
This strategy, sometimes called “zonal decarbonization” or “targeted electrification,” is one that many climate groups are advocating for as a way to achieve an orderly and equitable transition off of natural gas. The approach most states have taken so far — providing subsidies that gently prod consumers into going electric — results in a random pattern of adoption that can benefit some homeowners while harming others. It also does nothing to deter gas utilities from investing hundreds of millions of dollars in maintaining, replacing, or building new pipelines each year — investments that are set up to be recouped from ratepayers over the course of decades.
California isn’t the first place in the world to experiment with targeted electrification. The Swiss city of Zurich began systematically shutting down sections of its gas system in 2021, giving affected users about a decade of warning and offering partial compensation for the cost of new equipment. In Massachusetts, the utility Eversource is piloting a unique neighborhood-scale electrification project. The company hooked up 32 residential buildings and a few commercial businesses in the city of Framingham to a new underground network of pipes that carry water rather than natural gas, which in turn connect to geothermal heat pumps that use the water to heat or cool the air inside. There are more than a dozen such “thermal energy network” pilot projects in various stages in Massachusetts, New York, Colorado, Washington, Vermont, Maryland, and Minnesota.
But the new California program is unique in its scale and approach. For one thing, it applies to all gas utilities in the state. Beginning next summer, they will each need to submit maps to the utility commission that identify potential pipeline replacement projects; then, in 2026, regulators will use those maps to designate priority areas, giving precedence to low-income communities and households that lack heating or cooling. By July of that year, the commission must establish the rules of the pilot program, including a methodology for utilities to determine when electrification is more cost-effective than pipeline replacement, and rules for how utilities can pay for the projects and recover costs.
PG&E supported the bill and worked closely with its authors on the language. The utility declined an interview, but emailed me a statement saying the legislation “enables cost-effective, targeted electrification projects which will help avoid more expensive gas pipeline replacements, reducing gas system operating costs, and support the state’s and PG&E’s decarbonization goals.”
Utilities will still be spending ratepayer money on the electrification projects, but far less than they would have spent on pipeline infrastructure. For the remaining gas customers, it’s still possible rates will go up, though by less than they would have otherwise. Mike Henchen, a principal in the carbon-free buildings program at RMI, told me these pilot projects alone are not going to pull so many customers away from the gas system that it will put upward pressure on rates. The law caps the program at no more than 1% of a utility’s customers.
Vespa, the Earthjustice attorney, told me he originally worked on a more ambitious version of the bill that would have required utilities to avoid any new investments in the gas system when electrification was a cheaper alternative. But it was pared back and made voluntary in order to get it through the legislature. “The hope is that we'll get projects off the ground, we’ll get proof-of-concept,” he said. “I think there was a need to demonstrate some successful stories and then hopefully expand from there.”
While these pilots make sense, economically, for a dual gas and electric company like PG&E, one big question is whether the state’s gas-only utilities like Southern California Gas will take the initiative. (SoCalGas did not respond to my inquiry prior to publication, but the company did support the legislation.)
Looking ahead, even if lawmakers do expand the program to authorize every cost-effective project, this model can’t transition the entire state away from gas. These projects are more likely to pencil out in places with lower housing density, where a given section of pipeline is serving only a handful of homes. A fact sheet about the bill published by its lead sponsor, state senator David Min, says that “zero emissions alternatives” to pipeline replacement are only technically feasible and cost effective for about 5% of PG&E’s territory. “Gas customers won't be able to pay for the decommissioning of the whole gas system, or even 50% of it,” said Henchen.
In the meantime, however, there’s lots of low-hanging fruit to pluck. Targeted electrification of just 3% to 4% of gas customers across the state could reduce gas utility spending by $15 billion to $26 billion through 2045, according to an analysis by Energy and Environmental Economics.
“It’s a modest step,” said Vespa of the new law. “But I do think it’s meaningful to start moving forward and developing the frameworks for this.”
Revoy is already hitching its power packs to semis in one of America’s busiest shipping corridors.
Battery swaps used to be the future. To solve the unsolvable problem of long recharging times for electric vehicles, some innovators at the dawn of this EV age imagined roadside stops where drivers would trade their depleted battery for a fully charged one in a matter of minutes, then be on their merry way.
That vision didn’t work out for passenger EVs — the industry chose DC fast charging instead. If the startup Revoy has its way, however, this kind of idea might be exactly the thing that helps the trucking industry surmount its huge hurdles to using electric power.
Revoy’s creation is, essentially, a bonus battery pack on wheels that turns an ordinary semi into an EV for as long as the battery lasts. The rolling module carries a 525 kilowatt-hour lithium iron phosphate battery pack attaches to the back of the truck; then, the trailer full of cargo attaches to the module. The pack offers a typical truck 250 miles of electric driving. Founder Ian Rust told me that’s just enough energy to reach the next Revoy station, where the trucker could swap their depleted module for a fresh one. And if the battery hits zero charge, that's no problem because the truck reverts to its diesel engine. It’s a little like a plug-in hybrid vehicle, if the PHEV towed its battery pack like an Airstream and could drop it off at will.
“If you run out of battery with us, there's basically no range anxiety,” Rust said. “And we do it intentionally on our routes, run it down to as close to zero as possible before we hit the next Revoy swapping station. That way you can get the maximum value of the battery without having to worry about range.”
To start, a trucker in a normal, everyday semi pulls up to a Revoy station and drops their trailer. A worker attaches a fully charged Revoy unit to the truck and trailer—all in five minutes or less, Revoy promises. Once in place, the unit interfaces seamlessly with the truck’s drivetrain and controls.
“It basically takes over as the cruise control on the vehicle,” he said. “So the driver gets it up to speed, takes their foot off the gas, and then we actually become the primary powertrain on the vehicle. You really only have to burn diesel for the little bit that is getting onto the highway and then getting off the highway, and you get really extreme MPGs with that.”
The Revoy model is going through its real-world paces as we speak. Rust’s startup has partnered with Ryder trucking, whose drivers are powering their semis with Revoy EVs at battery-swap stops along a stretch of Interstate 30 in Texas and Arkansas, a major highway for auto parts and other supplies coming from Mexico. Rust hopes the next Revoy corridor will go into Washington State, where the ample hydropower could help supply clean energy to all those swappable batteries. Happily, he said, Revoy can expand piecemeal like this because its approach negates the chicken-and-egg problem of needing a whole nation of EV chargers to make the vehicles themselves viable. Once a truck leaves a Revoy corridor, it’s just a diesel-powered truck again.
Early data from the Ryder pilot shows that the EV unit slashed how much diesel fuel a truck needs to make it down the designated corridor. “This is a way we can reduce a path to reduce the emissions of our fleet without having to buy anything — and without having to have to worry about how much utilization we're going to have to get,” Mike Plasencia, group director of New Product Strategy at Ryder, told me.
Trucking represents one of the biggest opportunities for cutting the carbon emissions of the transportation sector. It’s also one of the most challenging. Heatmap has covered the problem of oversized SUV and pickup truck EVs, which need larger, more expensive batteries to propel them. The trucking problem is that issue on steroids: A semi can tow up to 80,000 pounds down an American highway.
There are companies building true EV semi trucks despite this tall order — Tesla’s has been road-testing one while hauling Pepsi around, and trucking mainstays like Peterbilt are trying their hand as well. Although the EV model that works for everyday cars — a built-in battery that requires recharging after a couple hundred miles — can work for short-haul trucks that move freight around a city, it is a difficult fit for long-haul trucking where a driver must cover vast distances on a strict timetable. That’s exactly where Revoy is trying to break in.
"We are really focused on long haul,” he told me. “The reason for that is, it's the bigger market. One of the big misconceptions in trucking is that it's dominated by short haul. It's very much the opposite. And it's the bigger emission source, it's the bigger fuel user."
Rust has a background in robotics and devised the Revoy system as a potential solution to both the high cost of EV semis and to the huge chunks of time lost to fueling during long-distance driving. Another part of the pitch is that the Revoy unit is more than a battery. By employing the regenerative braking common in EVs, the Revoy provides a redundancy beyond air brakes for slowing a big semi—that way, if the air brakes fail, a trucker has a better option than the runaway truck lane. The setup also provides power and active steering to the Revoy’s axle, which Rust told me makes the big rig easier to maneuver.
Plasencia agrees. “The feedback from the drivers has been positive,” he said. “You get feedback messages like, it felt like I was driving a car, or like I wasn't carrying anything.”
As it tries to expand to more trucking corridors across the nation, Revoy may face an uphill battle in trying to sell truckers and trucking companies on an entirely new way to think about electrifying their fleets. But Rust has one ace up his sleeve: With Revoy, they get to keep their trucks — no need to buy new ones.
On the DOE’s transmission projects, Cybertruck recalls, and Antarctic greening
Current conditions: Hurricane Kirk, now a Category 4 storm, could bring life-threatening surf and rip currents to the East Coast this weekend • The New Zealand city of Dunedin is flooded after its rainiest day in more than 100 years • Parts of the U.S. may be able to see the Northern Lights this weekend after the sun released its biggest solar flare since 2017.
The Energy Department yesterday announced $1.5 billion in investments toward four grid transmission projects. The selected projects will “enable nearly 1,000 miles of new transmission development and 7,100 MW of new capacity throughout Louisiana, Maine, Mississippi, New Mexico, Oklahoma, and Texas, while creating nearly 9,000 good-paying jobs,” the DOE said in a statement. One of the projects, called Southern Spirit, will involve installing a 320-mile high-voltage direct current line across Texas, Louisiana, and Mississippi that connects Texas’ ERCOT grid to the larger U.S. grid for the first time. This “will enhance reliability and prevent outages during extreme weather events,” the DOE said. “This is a REALLY. BIG. DEAL,” wrote Michelle Lewis at Electrek.
The DOE also released a study examining grid demands through 2050 and concluded that the U.S. will need to double or even triple transmission capacity by 2050 compared to 2020 to meet growing electricity demand.
Duke Energy, one of the country’s largest utilities, appears to be walking back its commitment to ditch coal by 2035. In a new plan released yesterday, Duke said it would not shut down the second-largest coal-fired power plant in the U.S., Gibson Station in Indiana, in 2035 as previously planned, but would instead run it through 2038. The company plans to retrofit the plant to run on natural gas as well as coal, with similar natural-gas conversions planned for other coal plants. The company also slashed projects for expanding renewables. According toBloomberg, a Duke spokeswoman cited increasing power demand for the changes. Electricity demand has seen a recent surge in part due to a boom in data centers. Ben Inskeep, program director at the Citizens Action Coalition of Indiana, a consumer and environmental advocacy group, noted that Duke’s modeling has Indiana customers paying 4% more each year through 2030 “as Duke continues to cling to its coal plants and wastes hundreds of millions on gasifying coal.”
The Edison Electric Institute issued its latest electric vehicle forecast, anticipating EV trends through 2035. Some key projections from the trade group’s report:
Tesla issued another recall for the Cybertruck yesterday, the fifth recall for the electric pickup since its launch at the end of last year. The new recall has to do with the rearview camera, which apparently is too slow to display an image to the driver when shifting into reverse. It applies to about 27,000 trucks (which is pretty much all of them), but an over-the-air software update to fix the problem has already been released. There were no reports of injuries or accidents from the defect.
A new study published in Nature found that vegetation is expanding across Antarctica’s northernmost region, known as the Antarctic Peninsula. As the planet warms, plants like mosses and lichen are growing on rocks where snow and ice used to be, resulting in “greening.” Examining satellite data, the researchers from the universities of Exeter and Hertfordshire, and the British Antarctic Survey, were shocked to discover that the peninsula has seen a tenfold increase in vegetation cover since 1986. And the rate of greening has accelerated by over 30% since 2016. This greening is “creating an area suitable for more advanced plant life or invasive species to get a foothold,” co-author Olly Bartlett, a University of Hertfordshire researcher, told Inside Climate News. “These rates of change we’re seeing made us think that perhaps we’ve captured the start of a more dramatic transformation.”
Moss on Ardley Island in the Antarctic. Dan Charman/Nature
Japan has a vast underground concrete tunnel system that was built to take on overflow from excess rain water and prevent Tokyo from flooding. It’s 50 meters underground, and nearly 4 miles long.
Carl Court/Getty Images