You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Net zero was never going to be easy, but between AI and Trump, it just got a whole lot harder.
Of all of the executives who have cozied up to President Donald Trump over the past two months, Mark Zuckerberg has appeared perhaps the most eager.
In the weeks before Trump took power, the Meta CEO scrambled to ditch his company’s fact-checking program, rolled back hate speech protections, and took an ax to Meta’s diversity, equity, and inclusion programs (reportedly with the blessing of Trump’s current deputy chief of staff and homeland security advisor Stephen Miller). The billionaire founder has named Joel Kaplan, a former energy executive and a prominent Republican, to the role of vice president of global public policy and, on the night of Trump’s inauguration, Zuckerberg — who President Trump once said could spend “life in prison” — wrote on Instagram that he was “optimistic and celebrating.”
Zuckerberg has since tried to assure Meta’s left-leaning employees that the company is holding true to its values, but in an all-hands meeting in January, he stated plainly, “We now have an opportunity to have a productive partnership with the United States government, and we’re going to take that.”
The question now is just where Meta’s climate goals will fit in this partnership.
Since taking office, President Trump has used executive orders to pause tens of billions of dollars in environmental and energy spending and stop all new wind energy permits from going forward. He has withdrawn from the Paris Agreement and declared a “national energy emergency” designed to speed up approvals for energy projects — that is, with the exception of renewable energy projects.
The courts will ultimately decide the fate of these orders. But as Zuckerberg strains to stay in the new president’s good graces, the White House’s fossil fuel boosterism could complicate Meta’s climate commitments. That’s particularly true given that those commitments were already on shaky ground in the midst of the energy-sucking boom in artificial intelligence.
While Zuckerberg has never made climate action his primary cause, in a speech to Harvard graduates in 2017, he did call on the class to join in “stopping climate change before we destroy the planet.” And Meta has worked hard to do its part. Since 2020, the company has achieved net zero emissions throughout its operations, thanks to a combination of renewable energy credits, carbon removal investments, and the direct use of solar and wind energy to reduce its emissions. By 2023, it had the largest renewable energy portfolio of any corporate buyer in the country, and just last year, it struck what it said was a “first-of-its-kind” partnership to power its data centers with geothermal energy.
But beyond accounting for its operational emissions, the company has also committed to achieving net zero emissions throughout its value chain, from the copper wires spiraling through these gargantuan data centers to the construction materials used to build them.
That’s a far more challenging goal, particularly when every AI company is trying to build out their computing capacity as quickly as possible, said one former Meta employee familiar with the company’s climate and energy strategy. (The employee asked to remain anonymous to discuss private matters.) “The fear in the back of people’s minds is someone is going to say: These are voluntary commitments, and we’re just not going to do it anymore,” the former employee said, noting the “herd mentality” of Big Tech. “If one domino falls, do others?”
A Meta spokesperson declined to comment on how the company’s climate goals may be impacted by the changing political landscape and didn’t respond to a request for comment about whether this week’s layoffs have impacted sustainability work. But in its most recent sustainability report, Meta acknowledged that meeting its net zero goals by 2030 “will be significantly harder” in the age of AI. “The challenge of reaching our sustainability goals given the increased demand for energy and resources driven by AI is not unique to Meta,” wrote Rachel Peterson, Meta’s vice president of infrastructure for data centers. Indeed, Google and Microsoft have both said they’re falling short of their climate targets, and in 2023 alone, Meta’s own data center energy use spiked 34%. Peterson wrote that this demand “will require major shifts in how companies like ours operate.”
Some of those shifts are already underway. Shortly after the election, Meta issued a request for proposals for nuclear developers with the goal of adding up to 4 gigawatts of new nuclear generation capacity — enough to power a small city — by the 2030s.
Though the company has plenty of apolitical reasons to pursue nuclear power and plenty of company among tech giants investing in the space, it doesn’t hurt that nuclear power is also more politically palatable at this moment. Just last week, Energy Secretary Chris Wright, a former fossil fuel executive, promised to “unleash commercial nuclear power,” even as he skewered the pursuit of a net-zero future. Wright’s secretarial order made not a single mention of solar and wind power, which make up the bulk of Meta’s renewable energy mix.
Meta’s push into nuclear by no means indicates it’s giving up on wind and solar. A Meta spokesperson pointed me to a new agreement Meta struck last week to purchase 115 megawatts of power from an Oklahoma wind farm. (Google reportedly struck its own wind deal earlier this month in Virginia.) But it does mean Meta is diversifying its energy mix to keep up with AI demand at a time when the federal government is least likely to get in its way.
“There’s been no repudiation of the climate goals,” Benjamin C. Lee, a computer scientist at the University of Pennsylvania who was previously a visiting scientist at Meta AI working on data center energy usage, told me. “It’s just that there simply isn’t enough wind and solar, and if you’re looking to build another 100 megawatt data center, you have to get the energy.” (Lee is now a visiting scientist at Google.)
“Energy of any kind trumps no energy,” he added.
That includes energy from natural gas. A few weeks after the election, Meta said it would build its largest data center yet — a 4 million square foot behemoth — in Richland Parish, Louisiana, which will be powered by three new natural gas plants. Meta’s announcement made no mention of the site’s power demands, but instead emphasized how the company planned to offset its impact by investing in community action grants, water stewardship, and adding enough new clean and renewable energy projects to the grid to cover 100% of the data center’s electricity needs.
But Zuckerberg left all of that out of his post about the project on Threads in January. Instead, just days after President Trump announced a new $500 billion AI data center partnership between Oracle, OpenAI, and Softbank, Zuckerberg boasted that “Meta is building a 2GW+ datacenter that is so large it would cover a significant part of Manhattan.”
The pandering post signaled a pivot — not necessarily in Meta’s actual plans for the data center, but in its climate-friendly messaging about it. In Zuckerberg’s telling, the data center’s sheer size, not its attempts at sustainability, were the selling point.
Still, despite these rhetorical moves, three people I spoke with who have previously worked at Meta on energy and sustainability issues are doubtful that the company’s substantial investments in renewable energy — particularly solar energy — are going away. That’s largely because solar is still often cheaper than other forms of energy. Even if the political case is diminished, they said, the business case is still there.
But investing in renewables alone won’t get Meta to its ultimate goal. Achieving net zero emissions throughout the value chain requires relying on materials that often do carry a cost premium. And it requires doing that at a time when AI companies are racing to one-up each other by building bigger data centers faster than ever before.
It’s those commitments that appear far more vulnerable, particularly when the White House is offering every excuse for corporate America to give them up. “Net zero was always going to fall by the wayside, but that was because of AI,” said Lee. “The question is whether the gap between what we had hoped to achieve and where we are becomes larger.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: States left flooded from recent severe storms are now facing freezing temperatures • Firefighters are battling blazes in Scotland due to unusually warm and dry weather • Hospitals in India are reporting a 25% rise in heat-related illnesses compared to last year. Yesterday the country’s northern state of Rajasthan reached 115 degrees Fahrenheit, about 13 degrees higher than seasonal norms.
President Trump’s sweeping new tariffs came into effect at 12:01 a.m. on Wednesday, rattling the world’s markets and raising the risk of a global trade war. The levies, which include a 104% tariff on Chinese imports, triggered a mass sell-off in U.S. Treasury bonds, hiking yields as investors worry about a potential recession and flock to alternative safe-haven investments. The price of oil fell for the fifth day in a row to its lowest since 2021, with Brent futures at about $61 per barrel, well below the $65 level that oil producers need in order to turn a profit drilling new wells nationwide. As Heatmap’s Robinson Meyer explained recently, the tariffs are an outright catastrophe for the oil industry because they threaten a global downturn that would hurt oil demand at a time when oil cartel OPEC+ is increasing its output. Trump’s slate of tariffs will impact the cost of just about everything, from gasoline to e-bikes to LNG to cars. China imposed retaliatory tariffs, increasing them from 34% to 84% in response to the U.S. escalation. Meanwhile, the European Union will vote today on whether to impose its own retaliatory fees. European shares plummeted, as did Asian and Australian stocks.
As Heatmap’s Emily Pontecorvo reported today, a new study published in the journal Nature Climate Change finds that the transition to clean energy could create a world that is less exposed to energy price shocks and other energy-related trade risks than the world we have today. “We have such a concentration of fossil resources in a few countries,” Steven Davis, a professor of Earth system science at Stanford and the lead author of the study, told Pontecorvo. Transition minerals, by contrast, are less geographically concentrated, so “you have this ability to hedge a little bit across the system.”
The White House issued several executive orders on Tuesday aimed at boosting U.S. coal production and use, pointing to rising electricity demand from artificial intelligence. The series of orders direct federal agencies to:
Trump also said he plans to invoke the Defense Production Act to spur mining operations, “a move that could put the federal purse behind reviving the fading industry,” Reutersreported. Coal is the dirtiest fossil fuel, and its use has been in decline since 2007. As of last year, wind and solar combined surpassed coal for U.S. electricity generation.
President Trump signed a separate executive order on Tuesday that targets climate laws at the state level and seeks to remove threats to U.S. “energy dominance,” including “illegitimate impediments to the identification, development, siting, production, investment in, or use of domestic energy resources — particularly oil, natural gas, coal, hydropower, geothermal, biofuel, critical mineral, and nuclear energy resources.” The order references “state overreach” and suggests that some state and local governments are overstepping their constitutional authority in regulating energy through interstate trade barriers or fines on energy producers. It calls out New York and Vermont for their climate change superfund laws that require fossil fuel companies to pay for their planet-warming greenhouse gas emissions. And it mentions California’s carbon cap-and-trade system.
The executive order directs the U.S. attorney general to compile a list of all state and local laws “purporting to address ‘climate change,’” along with ESG, environmental justice, carbon taxes, and anything involving “carbon or ‘greenhouse gas’ emissions,” and put a stop to their enforcement. “The federal government cannot unilaterally strip states’ independent constitutional authority,” New York Governor Kathy Hochul and New Mexico Governor Michelle Lujan Grisham said in a statement. “We are a nation of states — and laws — and we will not be deterred. We will keep advancing solutions to the climate crisis that safeguard Americans’ fundamental right to clean air and water, create good-paying jobs, grow the clean energy economy, and make our future healthier and safer.”
Wood Mackenzie issued its annual U.S. wind energy report this week. It finds that 2024 marked the worst year for new onshore wind capacity in the past decade, with just 3.9 gigawatts installed. Through 2029, the firm expects developers to install another 33 gigawatts of onshore capacity, 6.6 gigawatts of offshore capacity, and carry out 5.5 gigawatts of upgrades and refurbishings. The five-year outlook marks “a 40% decrease quarter-on-quarter from a previous total of 75.8 gigawatts.” The report warns of enduring “uncertainty” thanks to the Trump administration’s attacks on the wind industry. “Growth will happen, but it’s going to be slower,” wrote Michelle Lewis at Electrek. “[Trump] has managed to get some projects canceled, and he’ll make things more of a slog over the next few years.”
President Trump has pulled the U.S. out of international talks to decarbonize the shipping industry and vowed to reciprocate against any fees on U.S. ships, Politicoreported. The International Maritime Organization's Maritime Environmental Protection Conference is unfolding this week in London, where negotiators are trying to agree on a policy to curb shipping pollution through carbon taxation. Shipping accounts for about 3% of global greenhouse gas emissions. Trump reportedly sent a letter to the conference saying “the U.S. rejects any and all efforts to impose economic measures against its ships based on GHG emissions or fuel choice. Should such a blatantly unfair measure go forward, our government will consider reciprocal measures so as to offset any fees charged to U.S. ships and compensate the American people for any other economic harm from any adopted GHG emissions measures.”
“What’s next, a mandate that Americans must commute by horse and buggy?”
–Kit Kennedy, a managing director at the Natural Resources Defense Council, in response to Trump’s executive orders aimed at revitalizing the U.S. coal industry.
Rob and Jesse get into the nitty gritty on China’s energy policy with Joanna Lewis and John Paul Helveston.
China’s industrial policy for clean energy has turned the country into a powerhouse of solar, wind, battery, and electric vehicle manufacturing.
But long before the country’s factories moved global markets — and invited Trump’s self-destructive tariffs — the country implemented energy and technology policy to level up its domestic industry. How did those policies work? Which tools worked best? And if the United States needs to rebuild in the wake of Trump’s tariffs, what should this country learn?
On this week’s episode of Shift Key, Rob and Jesse talk with two scholars who have been studying Chinese industrial policy since the Great Recession. Joanna Lewis is the Provost’s Distinguished Associate Professor of Energy and Environment and Director of the Science, Technology and International Affairs Program at Georgetown University's School of Foreign Service. She’s also the author of Green Innovation in China. John Paul Helveston is an assistant professor in engineering management and systems engineering at George Washington University. He studies consumer preferences and market demand for new technologies, as well as China’s longstanding gasoline car and EV industrial policy. Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: One kind of classical hard problem about industrial policy is selecting the technology that is going to eventually be a winner. And there’s a few ways to get around this problem. One is to just make lots of bets.
One thing that’s been a little unclear to me about the set of technology bets that China has made is that it has seemed to pick a set of technologies that are now extremely competitive globally, and it did seem to pick up on those technologies before Western governments or firms really got to them. Is that entirely because China just made a bunch of technology bets and it happened that these are the ones that worked out? Is it because China could look ahead to the environmental needs of the world and the clean development needs of the world and say, well, there’s probably going to be a need for solar? There’s probably going to be a need for wind? There’s probably going to be a need for EVs? Or is it a third thing, which is that China’s domestic needs, its domestic energy security needs, just happen to align really well with the direction of development that the world is kind of interested in moving in anyway.
John Paul Helveston: All of the above. I don’t know — like, that’s the answer here. I’ll add one thing that’s a little bit nuanced: There’s been tremendous waste. I’ll just put that out there. There’s been all kinds of investments that did not pan out at all, like semiconductors for a long, long time. Just things that didn’t work.
I think where China has had a lot of success is in areas where … It’s like the inverse of what the United States innovation ecosystem does well. China’s ecosystem is really driven around production, and a lot of that is part of the way the government’s set up, that local provinces have a ton of power over how money gets spent, and often repurpose funds for export-oriented production. So that’s been a piece of the engine of China’s economic miracle, is mass producing everything.
But there’s a lot of knowledge that goes along with that. When you look at things like solar, that technology goes back many, many decades for, you know, satellites. But making it a mass produced product for energy applications requires production innovations. You need to get costs down. You need to figure out how to make the machine that makes the machine. And that is something that the Chinese ecosystem does very well.
So that’s one throughline across all of these things, is that the technology got to a certain level of maturity where production improvements and cost decreases were the bigger things that made them globally competitive. I don’t think anyone would be considering an EV if we were still looking at $1,000 a kilowatt hour — and we were there just 15 years ago. And so that’s the big thing. It’s just production. I don’t know if they’ve been exceptionally good at just picking winners, but they’re good at picking things that can be mass produced.
Music for Shift Key is by Adam Kromelow.
That’s according to new research published today analyzing flows of minerals and metals vs. fossil fuels.
Among fossil fuel companies and clean energy developers, almost no one has been spared from the effects of Trump’s sweeping tariffs. But the good news is that in general, the transition to clean energy could create a world that is less exposed to energy price shocks and other energy-related trade risks than the world we have today.
That’s according to a timely study published in Nature Climate Change on Wednesday. The authors compared countries’ trade risks under a fossil fuel-based energy economy to a net-zero emissions economy, focusing on the electricity and transportation sectors. The question was whether relying on oil, gas, and coal for energy left countries more or less exposed than relying on the minerals and metals that go into clean energy technologies, including lithium, cobalt, nickel, and uranium.
First the researchers identified which countries have known reserves of which resources as well as those countries’ established trading partners. Then they evaluated more than a thousand pathways for how the world could achieve net-zero emissions, each with different amounts or configurations of wind, solar, batteries, nuclear, and electric vehicles, and measured how exposed to trade risks each country would be under each scenario.
Ultimately, they found that most countries’ overall trade risks decreased under net-zero emissions scenarios relative to today. “We have such a concentration of fossil resources in a few countries,” Steven Davis, a professor of Earth system science at Stanford and the lead author of the study, told me. Transition minerals, by contrast, are less geographically concentrated, so “you have this ability to hedge a little bit across the system.”
The authors’ metric for trade risk is a combination of how dependent a given country is on imports and how many trading partners it has for a given resource, i.e. how diverse its sourcing is. “If you have a large domestic supply of a resource, or you have a large trade network, and you can get that resource from lots of different trading partners, you're in a relatively better spot,” Davis said.
Of course, this is a weird time to conclude that clean energy is better equipped to withstand trade shocks. As my colleagues at Heatmap have reported, Trump’s tariffs are hurting the economics of batteries, renewables, and minerals production, whether domestic or not. The paper considers risks from “random and isolated trade shocks,” Davis told me, like losing access to Bolivian lithium due to military conflict or a natural disaster. Trump’s tariffs, by contrast, are impacting everything, everywhere, all at once.
Davis embarked on the study almost two years ago after working as a lead author of the mitigation section of the Fifth National Climate Assessment, a report delivered to Congress every four years. A lot of the chapter focused on the economics of switching to solar and wind and trying to electrify as many end uses of energy as possible, but it also touched on considerations such as environmental justice, water, land, and trade. “There's this concern of having access to some of these more exotic materials, and whether that could be a vulnerability,” he told me. “So we said, okay, but we also know we're going to be trading a lot less fossil fuels, and that is probably going to be a huge benefit. So let's try to figure out what the net effect is.”
The study found that some more affluent countries, including the United States, could see their energy security decline in net-zero scenarios unless their trade networks expand. The U.S. owns 23% of the fossil reserves used for electricity generation, but only 4% of the critical materials needed for solar panels and wind turbines.
One conclusion for Davis was that the U.S. should be much more strategic about its trade partnerships with countries in South America and Sub-Saharan Africa. Companies are already starting to invest in developing mineral resources in those regions, but policymakers should make a concerted effort to develop those trade relationships, as well. The study also discusses how governments can reduce trade risks by investing in recycling infrastructure and in research to reduce the material intensity of clean energy technologies.
Davis also acknowledged that focusing on the raw materials alone oversimplifies the security question. It also matters where the minerals are processed, and today, a lot of that processing happens in China, even for minerals that don’t originate there. That means it will also be important to build up processing capacity elsewhere.
One caveat to the paper is that comparing the trade risks of fossil fuels and clean energy is sort of apples and oranges. A fossil fuel-based energy system requires the raw resource — fuel — to operate. But a clean energy system mostly requires the raw materials in the manufacturing and construction phase. Once you have solar panels and wind turbines, you don’t need continuous commodity inputs to get energy out of them. Ultimately, Davis said, the study’s conclusions about the comparative trade risks are probably conservative.
“Interrupting the flow of some of these transition materials could slow our progress in getting to the net zero future, but it would have much less of an impact on the actual cost of energy to Americans,” he said. “If we can successfully get a lot of these things built, then I think that's going to be a very secure situation.”