You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Here’s what you need to know about the nuclear power comeback — including what’s going on, what’s new this time, and is it safe?
For a while there, nuclear energy looked like it was on its way out. After taking off post-World War II, it lost momentum toward the dawn of the 21st century, when sagging public support and mounting costs led to dozens of cancellations in the U.S. and drove the rate of new proposals off a cliff. Only a few reactors have been built in the U.S. this century; the most recent, Georgia Power’s Plant Vogtle units 3 and 4, were years behind schedule and billions of dollars over budget. Vogtle-3 came online last summer, with Vogtle-4 — which was delayed even further by an equipment malfunction — expected to follow early this year.
It’s funny how time works, though. With demand for reliable zero-carbon energy rising, a new wave of nuclear developers is trying to recapture some of the industry’s long-lost momentum. They’re entering the race to net-zero with big ambitions — and much smaller reactor designs. Whether you’re wondering about the state of the U.S. nuclear power sector, what’s new about new nuclear, where the nuclear waste is going, and of course, whether it’s safe, read on.
Let’s start with the basics.
Nuclear reactors generate electricity using a process called fission. Inside the reactor’s core, a controlled chain reaction splits unstable uranium-235 into smaller elements; that process releases heat — a lot of heat.
The reactors in today’s U.S. nuclear fleet fall into two categories: boiling water reactors and pressurized water reactors. Each circulates water through the reactor core to manage the temperature and prevent meltdowns, and both use the heat produced by fission to create steam that powers turbines and thereby generates electricity. The main difference is in the details: Boiling water reactors use their coolant water to produce electricity directly, by capturing the steam, whereas pressurized water reactors keep their coolant water in a separate system that’s under enough pressure to prevent the water from turning to steam.
Some experimental reactors and newer commercial designs use different cooling systems, but we’ll get into those later. Lastly, while nuclear energy is not considered renewable, in the sense that it relies on a finite resource (enriched uranium) for fuel, it is a zero-emission energy source.
The sector emerged in the late 1950s and expanded rapidly over the next several decades. At its peak, the country’s nuclear fleet included 112 reactors — a number that has declined to about 90 today. Most of the surviving plants were built between 1970 and 1990.
The shrinkage has partly to do with the nuclear disarmament movement, which arose during the Cold War and grew to encompass nuclear power development, as well. (As it happens, much of the present day environmental movement has its roots in anti-nuclear activism.) Then there was the partial nuclear meltdown at Three Mile Island in 1979, which intensified existing public opposition to nuclear energy projects. That growing pushback, combined with reduced growth in electricity demand and the significant up-front investments nuclear plants required, caused some projects to be scrapped and fewer to be proposed. The Chernobyl nuclear disaster in 1986 seemed to confirm everyone’s worst fears.
Interest began to reemerge in the U.S. in the early 2000s as the budding public awareness of climate change cast doubt on the future viability of fossil fuels, but the 2011 Fukushima nuclear accident quashed many of those plans. The last U.S. nuclear plant to start up before Vogtle-3 entered construction in 1973 but was suspended for two decades before its completion in 2016.
As of 2022, 18.2% of U.S. electricity came from the country’s remaining nuclear reactors, according to federal data. That’s less than we’ve seen in decades.
The share of nuclear power on the grid has been slowly dwindling as aging reactors are shut down and other resources — mainly natural gas and renewables — have taken on a greater proportion of the country’s electricity-generating burden. The share of electricity from renewables surpassed energy from nuclear for the first time in 2021; in 2022, renewables contributed 21.3% of U.S. electricity.
Like coal and gas plants (and renewables when paired with sufficient storage), nuclear provides baseload power — meaning it sends electricity onto the grid at a consistent, predictable rate — as opposed to sources like wind and solar on their own, which provide intermittent supply. Electric utilities depend heavily on nuclear plants and other baseload resources to match supply with continuously fluctuating demand, accommodating the variability of wind and solar without sending too much or too little power onto the grid, which would cause power surges or blackouts.
Generating electricity using nuclear fission remains a divisive issue that cuts across partisan lines. In the inaugural Heatmap Climate Poll, nuclear came in a distant last among clean energy sources people feel comfortable having in their communities.
Some major environmental groups like the Sierra Club and Greenpeace maintain that the risk of serious disasters at nuclear power plants poses an unacceptable risk to communities and ecosystems. Others, including the Nature Conservancy, view it as a reliable low-carbon energy resource that’s — crucially — available to us today, while promising but immature options such as long-duration energy storage are still catching up.
Historically, nuclear has caused far fewer fatalities than fossil fuels, which generate all kinds of toxic, potentially deadly pollution — and that’s without factoring in their contribution to climate change and its associated disasters.
The companies now hoping to pioneer a new generation of nuclear reactors in the U.S. say their designs incorporate the lessons learned from the accidents in Chernobyl and Fukushima, putting even more safeguards in place than the fleet of reactors operating across the country today. (There’s still a debate over whether the proposed reactors will actually be safer, though.)
Spent uranium fuel is radioactive, and will remain radioactive for a very long time. As a result, there’s still a lot of disagreement about where that waste should go.
The federal government tried in the early 2000s to create a national repository in Nevada’s Yucca Mountain, but the project was stopped by intense local and regional opposition. The Western Shoshone, a tribe whose members have long faced exposure to radioactive fallout from nearby nuclear tests, sued the federal government in 2005. Harry Reid, a former U.S. Senator from Nevada who served as Majority Leader from 2007 to 2015, also fought against the repository.
In the absence of a central repository, the waste produced by nuclear plants is usually stored in deep water pools, which keep the spent fuel cool, or in steel casks onsite to keep the radiation from escaping into the surrounding environment.
If a repository eventually opens, some existing waste will likely be moved out of temporary storage and relocated there.
In short, the concrete behemoths that have long been the norm in the U.S. are really, really expensive to build. They also — like the two new Vogtle reactors — have a tendency to go way over their deadlines and budgets. That makes the electricity nuclear plants generate particularly expensive.
The vast majority of U.S. coal plants were built during the same few decades as most of the country’s nuclear reactors. But when utilities started to face more pressure to reduce their carbon emissions, toppling coal’s reign over the power sector, utilities wound up preferring to build cheaper — and, at least at the time, less controversial — natural gas power plants over nuclear power plants.
But public opinion is beginning to shift. About 57% of American adults favor building new nuclear power, a Pew Research Center survey found last year, compared with 43% in 2016. Though support is higher among Republicans than Democrats, it’s on the rise within both parties.
Today’s electric grid is a far cry from the 20th-century grid that traditional nuclear reactors were built for, and the new reactor models that are making the most headway reflect those changes. In general, these designs are smaller, cheaper (at least on paper), and more flexible than those already in operation.
Unlike traditional reactors, which generally require a lot of custom fabrication to be completed at the project site, small modular reactors — such as the ones being developed by NuScale Power — have components that are meant to be made in a factory, assembled quickly wherever they’ll operate, and combined with other modules as needed to increase power output. Fast reactors (so-named for their highly energized neutrons), like Bill-Gates-fronted TerraPower’s Natrium design, circulate coolants other than water through the core. (Natrium uses liquid sodium.)
Advocates of next-generation nuclear power are optimistic that the first such reactors will come online before the end of the decade. Several of the leading proposals have run into financial and logistical troubles over the last couple of years, however. In November, NuScale canceled its flagship project at the Idaho National Laboratory. It had been on track to be the first commercial small modular reactor built in the U.S. but was thwarted by rising costs, which caused too many expected buyers of its electricity to pull their support.
Nuclear’s image is recovering globally, too. Some of the companies working on demonstration reactors in the U.S. have been outspoken about wanting to see their designs supplant fossil fuels and provide abundant energy all over the world. Meanwhile, many countries are devoting plenty of their own resources to nuclear power.
Japan, which shuttered its sizable nuclear fleet in the aftermath of the Fukushima accident, is slowly bringing some of its nuclear capacity back online. In December, Japanese regulators lifted an operational ban on the Kashiwazaki-Kariwa Nuclear Power Plant, the largest nuclear plant in the world.
Nuclear power is also enjoying renewed popularity in parts of Europe, including France and the U.K. In France, where the long-dominant technology has faltered in recent years, a half-dozen new nuclear power plants are in the works, and even more small modular reactors could follow. The U.K. is also planning a new wave of nuclear development.
Elsewhere, including in Germany, nuclear hasn’t found the same traction. After delaying the closure of its last three nuclear reactors amid natural gas shortages caused by the war in Ukraine, Germany closed the reactors last spring, eliciting a mixed reaction from environmental groups.
Meanwhile, China has close to 23 gigawatts of nuclear capacity under construction — the “largest nuclear expansion in history,” Jacopo Buongiorno, a professor of nuclear science and engineering at MIT, told CNBC last year.
It’s still early days for most of the world’s next-generation nuclear reactors. With even the most promising designs largely unproven, there’s plenty of uncertainty about where today’s projects will ultimately lead. That makes it tricky to predict what role nuclear power will play in the energy transition over the coming decades.
There’s plenty of interest in building more capacity, however. In December, at COP28, the U.S. and 24 other countries — including Japan, Korea, France and the UK — signed on to a goal of tripling global nuclear energy capacity by 2050 in order to stay on track to reach net-zero emissions by then. Nuclear plants could also be an important source of carbon-free energy for producing green hydrogen, a nascent industry that got a major boost from tax credits under the Inflation Reduction Act.
But the U.S. Energy Information Administration’s most recent capacity forecast projects that the total amount of electricity from the country’s nuclear plants will decline in the coming decades — representing just 13% of net power generation by 2050.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
New York City may very well be the epicenter of this particular fight.
It’s official: the Moss Landing battery fire has galvanized a gigantic pipeline of opposition to energy storage systems across the country.
As I’ve chronicled extensively throughout this year, Moss Landing was a technological outlier that used outdated battery technology. But the January incident played into existing fears and anxieties across the U.S. about the dangers of large battery fires generally, latent from years of e-scooters and cellphones ablaze from faulty lithium-ion tech. Concerned residents fighting projects in their backyards have successfully seized upon the fact that there’s no known way to quickly extinguish big fires at energy storage sites, and are winning particularly in wildfire-prone areas.
How successful was Moss Landing at enlivening opponents of energy storage? Since the California disaster six months ago, more than 6 gigawatts of BESS has received opposition from activists explicitly tying their campaigns to the incident, Heatmap Pro® researcher Charlie Clynes told me in an interview earlier this month.
Matt Eisenson of Columbia University’s Sabin Center for Climate Law agreed that there’s been a spike in opposition, telling me that we are currently seeing “more instances of opposition to battery storage than we have in past years.” And while Eisenson said he couldn’t speak to the impacts of the fire specifically on that rise, he acknowledged that the disaster set “a harmful precedent” at the same time “battery storage is becoming much more present.”
“The type of fire that occurred there is unlikely to occur with modern technology, but the Moss Landing example [now] tends to come up across the country,” Eisenson said.
Some of the fresh opposition is in rural agricultural communities such as Grundy County, Illinois, which just banned energy storage systems indefinitely “until the science is settled.” But the most crucial place to watch seems to be New York City, for two reasons: One, it’s where a lot of energy storage is being developed all at once; and two, it has a hyper-saturated media market where criticism can receive more national media attention than it would in other parts of the country.
Someone who’s felt this pressure firsthand is Nick Lombardi, senior vice president of project development for battery storage company NineDot Energy. NineDot and other battery storage developers had spent years laying the groundwork in New York City to build out the energy storage necessary for the city to meet its net-zero climate goals. More recently they’ve faced crowds of protestors against a battery storage facility in Queens, and in Staten Island endured hecklers at public meetings.
“We’ve been developing projects in New York City for a few years now, and for a long time we didn’t run into opposition to our projects or really any sort of meaningful negative coverage in the press. All of that really changed about six months ago,” Lombardi said.
The battery storage developer insists that opposition to the technology is not popular and represents a fringe group. Lombardi told me that the company has more than 50 battery storage sites in development across New York City, and only faced “durable opposition” at “three or four sites.” The company also told me it has yet to receive the kind of email complaint flood that would demonstrate widespread opposition.
This is visible in the politicians who’ve picked up the anti-BESS mantle: GOP mayoral candidate Curtis Sliwa’s become a champion for the cause, but mayor Eric Adams’ “City of Yes” campaign itself would provide for the construction of these facilities. (While Democratic mayoral nominee Zohran Mamdani has not focused on BESS, it’s quite unlikely the climate hawkish democratic socialist would try to derail these projects.)
Lombardi told me he now views Moss Landing as a “catalyst” for opposition in the NYC metro area. “Suddenly there’s national headlines about what’s happening,” he told me. “There were incidents in the past that were in the news, but Moss Landing was headline news for a while, and that combined with the fact people knew it was happening in their city combined to create a new level of awareness.”
He added that six months after the blaze, it feels like developers in the city have a better handle on the situation. “We’ve spent a lot of time in reaction to that to make sure we’re organized and making sure we’re in contact with elected officials, community officials, [and] coordinated with utilities,” Lombardi said.
And more on the biggest conflicts around renewable energy projects in Kentucky, Ohio, and Maryland.
1. St. Croix County, Wisconsin - Solar opponents in this county see themselves as the front line in the fight over Trump’s “Big Beautiful” law and its repeal of Inflation Reduction Act tax credits.
2. Barren County, Kentucky - How much wood could a Wood Duck solar farm chuck if it didn’t get approved in the first place? We may be about to find out.
3. Iberia Parish, Louisiana - Another potential proxy battle over IRA tax credits is going down in Louisiana, where residents are calling to extend a solar moratorium that is about to expire so projects can’t start construction.
4. Baltimore County, Maryland – The fight over a transmission line in Maryland could have lasting impacts for renewable energy across the country.
5. Worcester County, Maryland – Elsewhere in Maryland, the MarWin offshore wind project appears to have landed in the crosshairs of Trump’s Environmental Protection Agency.
6. Clark County, Ohio - Consider me wishing Invenergy good luck getting a new solar farm permitted in Ohio.
7. Searcy County, Arkansas - An anti-wind state legislator has gone and posted a slide deck that RWE provided to county officials, ginning up fresh uproar against potential wind development.
Talking local development moratoria with Heatmap’s own Charlie Clynes.
This week’s conversation is special: I chatted with Charlie Clynes, Heatmap Pro®’s very own in-house researcher. Charlie just released a herculean project tracking all of the nation’s county-level moratoria and restrictive ordinances attacking renewable energy. The conclusion? Essentially a fifth of the country is now either closed off to solar and wind entirely or much harder to build. I decided to chat with him about the work so you could hear about why it’s an important report you should most definitely read.
The following chat was lightly edited for clarity. Let’s dive in.
Tell me about the project you embarked on here.
Heatmap’s research team set out last June to call every county in the United States that had zoning authority, and we asked them if they’ve passed ordinances to restrict renewable energy, or if they have renewable energy projects in their communities that have been opposed. There’s specific criteria we’ve used to determine if an ordinance is restrictive, but by and large, it’s pretty easy to tell once a county sends you an ordinance if it is going to restrict development or not.
The vast majority of counties responded, and this has been a process that’s allowed us to gather an extraordinary amount of data about whether counties have been restricting wind, solar and other renewables. The topline conclusion is that restrictions are much worse than previously accounted for. I mean, 605 counties now have some type of restriction on renewable energy — setbacks that make it really hard to build wind or solar, moratoriums that outright ban wind and solar. Then there’s 182 municipality laws where counties don’t have zoning jurisdiction.
We’re seeing this pretty much everywhere throughout the country. No place is safe except for states who put in laws preventing jurisdictions from passing restrictions — and even then, renewable energy companies are facing uphill battles in getting to a point in the process where the state will step in and overrule a county restriction. It’s bad.
Getting into the nitty-gritty, what has changed in the past few years? We’ve known these numbers were increasing, but what do you think accounts for the status we’re in now?
One is we’re seeing a high number of renewables coming into communities. But I think attitudes started changing too, especially in places that have been fairly saturated with renewable energy like Virginia, where solar’s been a presence for more than a decade now. There have been enough projects where people have bad experiences that color their opinion of the industry as a whole.
There’s also a few narratives that have taken shape. One is this idea solar is eating up prime farmland, or that it’ll erode the rural character of that area. Another big one is the environment, especially with wind on bird deaths, even though the number of birds killed by wind sounds big until you compare it to other sources.
There are so many developers and so many projects in so many places of the world that there are examples where either something goes wrong with a project or a developer doesn’t follow best practices. I think those have a lot more staying power in the public perception of renewable energy than the many successful projects that go without a hiccup and don’t bother people.
Are people saying no outright to renewable energy? Or is this saying yes with some form of reasonable restrictions?
It depends on where you look and how much solar there is in a community.
One thing I’ve seen in Virginia, for example, is counties setting caps on the total acreage solar can occupy, and those will be only 20 acres above the solar already built, so it’s effectively blocking solar. In places that are more sparsely populated, you tend to see restrictive setbacks that have the effect of outright banning wind — mile-long setbacks are often insurmountable for developers. Or there’ll be regulations to constrict the scale of a project quite a bit but don’t ban the technologies outright.
What in your research gives you hope?
States that have administrations determined to build out renewables have started to override these local restrictions: Michigan, Illinois, Washington, California, a few others. This is almost certainly going to have an impact.
I think the other thing is there are places in red states that have had very good experiences with renewable energy by and large. Texas, despite having the most wind generation in the nation, has not seen nearly as much opposition to wind, solar, and battery storage. It’s owing to the fact people in Texas generally are inclined to support energy projects in general and have seen wind and solar bring money into these small communities that otherwise wouldn’t get a lot of attention.