You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Here’s what you need to know about the nuclear power comeback — including what’s going on, what’s new this time, and is it safe?
For a while there, nuclear energy looked like it was on its way out. After taking off post-World War II, it lost momentum toward the dawn of the 21st century, when sagging public support and mounting costs led to dozens of cancellations in the U.S. and drove the rate of new proposals off a cliff. Only a few reactors have been built in the U.S. this century; the most recent, Georgia Power’s Plant Vogtle units 3 and 4, were years behind schedule and billions of dollars over budget. Vogtle-3 came online last summer, with Vogtle-4 — which was delayed even further by an equipment malfunction — expected to follow early this year.
It’s funny how time works, though. With demand for reliable zero-carbon energy rising, a new wave of nuclear developers is trying to recapture some of the industry’s long-lost momentum. They’re entering the race to net-zero with big ambitions — and much smaller reactor designs. Whether you’re wondering about the state of the U.S. nuclear power sector, what’s new about new nuclear, where the nuclear waste is going, and of course, whether it’s safe, read on.
Let’s start with the basics.
Nuclear reactors generate electricity using a process called fission. Inside the reactor’s core, a controlled chain reaction splits unstable uranium-235 into smaller elements; that process releases heat — a lot of heat.
The reactors in today’s U.S. nuclear fleet fall into two categories: boiling water reactors and pressurized water reactors. Each circulates water through the reactor core to manage the temperature and prevent meltdowns, and both use the heat produced by fission to create steam that powers turbines and thereby generates electricity. The main difference is in the details: Boiling water reactors use their coolant water to produce electricity directly, by capturing the steam, whereas pressurized water reactors keep their coolant water in a separate system that’s under enough pressure to prevent the water from turning to steam.
Some experimental reactors and newer commercial designs use different cooling systems, but we’ll get into those later. Lastly, while nuclear energy is not considered renewable, in the sense that it relies on a finite resource (enriched uranium) for fuel, it is a zero-emission energy source.
The sector emerged in the late 1950s and expanded rapidly over the next several decades. At its peak, the country’s nuclear fleet included 112 reactors — a number that has declined to about 90 today. Most of the surviving plants were built between 1970 and 1990.
The shrinkage has partly to do with the nuclear disarmament movement, which arose during the Cold War and grew to encompass nuclear power development, as well. (As it happens, much of the present day environmental movement has its roots in anti-nuclear activism.) Then there was the partial nuclear meltdown at Three Mile Island in 1979, which intensified existing public opposition to nuclear energy projects. That growing pushback, combined with reduced growth in electricity demand and the significant up-front investments nuclear plants required, caused some projects to be scrapped and fewer to be proposed. The Chernobyl nuclear disaster in 1986 seemed to confirm everyone’s worst fears.
Interest began to reemerge in the U.S. in the early 2000s as the budding public awareness of climate change cast doubt on the future viability of fossil fuels, but the 2011 Fukushima nuclear accident quashed many of those plans. The last U.S. nuclear plant to start up before Vogtle-3 entered construction in 1973 but was suspended for two decades before its completion in 2016.
As of 2022, 18.2% of U.S. electricity came from the country’s remaining nuclear reactors, according to federal data. That’s less than we’ve seen in decades.
The share of nuclear power on the grid has been slowly dwindling as aging reactors are shut down and other resources — mainly natural gas and renewables — have taken on a greater proportion of the country’s electricity-generating burden. The share of electricity from renewables surpassed energy from nuclear for the first time in 2021; in 2022, renewables contributed 21.3% of U.S. electricity.
Like coal and gas plants (and renewables when paired with sufficient storage), nuclear provides baseload power — meaning it sends electricity onto the grid at a consistent, predictable rate — as opposed to sources like wind and solar on their own, which provide intermittent supply. Electric utilities depend heavily on nuclear plants and other baseload resources to match supply with continuously fluctuating demand, accommodating the variability of wind and solar without sending too much or too little power onto the grid, which would cause power surges or blackouts.
Generating electricity using nuclear fission remains a divisive issue that cuts across partisan lines. In the inaugural Heatmap Climate Poll, nuclear came in a distant last among clean energy sources people feel comfortable having in their communities.
Some major environmental groups like the Sierra Club and Greenpeace maintain that the risk of serious disasters at nuclear power plants poses an unacceptable risk to communities and ecosystems. Others, including the Nature Conservancy, view it as a reliable low-carbon energy resource that’s — crucially — available to us today, while promising but immature options such as long-duration energy storage are still catching up.
Historically, nuclear has caused far fewer fatalities than fossil fuels, which generate all kinds of toxic, potentially deadly pollution — and that’s without factoring in their contribution to climate change and its associated disasters.
The companies now hoping to pioneer a new generation of nuclear reactors in the U.S. say their designs incorporate the lessons learned from the accidents in Chernobyl and Fukushima, putting even more safeguards in place than the fleet of reactors operating across the country today. (There’s still a debate over whether the proposed reactors will actually be safer, though.)
Spent uranium fuel is radioactive, and will remain radioactive for a very long time. As a result, there’s still a lot of disagreement about where that waste should go.
The federal government tried in the early 2000s to create a national repository in Nevada’s Yucca Mountain, but the project was stopped by intense local and regional opposition. The Western Shoshone, a tribe whose members have long faced exposure to radioactive fallout from nearby nuclear tests, sued the federal government in 2005. Harry Reid, a former U.S. Senator from Nevada who served as Majority Leader from 2007 to 2015, also fought against the repository.
In the absence of a central repository, the waste produced by nuclear plants is usually stored in deep water pools, which keep the spent fuel cool, or in steel casks onsite to keep the radiation from escaping into the surrounding environment.
If a repository eventually opens, some existing waste will likely be moved out of temporary storage and relocated there.
In short, the concrete behemoths that have long been the norm in the U.S. are really, really expensive to build. They also — like the two new Vogtle reactors — have a tendency to go way over their deadlines and budgets. That makes the electricity nuclear plants generate particularly expensive.
The vast majority of U.S. coal plants were built during the same few decades as most of the country’s nuclear reactors. But when utilities started to face more pressure to reduce their carbon emissions, toppling coal’s reign over the power sector, utilities wound up preferring to build cheaper — and, at least at the time, less controversial — natural gas power plants over nuclear power plants.
But public opinion is beginning to shift. About 57% of American adults favor building new nuclear power, a Pew Research Center survey found last year, compared with 43% in 2016. Though support is higher among Republicans than Democrats, it’s on the rise within both parties.
Today’s electric grid is a far cry from the 20th-century grid that traditional nuclear reactors were built for, and the new reactor models that are making the most headway reflect those changes. In general, these designs are smaller, cheaper (at least on paper), and more flexible than those already in operation.
Unlike traditional reactors, which generally require a lot of custom fabrication to be completed at the project site, small modular reactors — such as the ones being developed by NuScale Power — have components that are meant to be made in a factory, assembled quickly wherever they’ll operate, and combined with other modules as needed to increase power output. Fast reactors (so-named for their highly energized neutrons), like Bill-Gates-fronted TerraPower’s Natrium design, circulate coolants other than water through the core. (Natrium uses liquid sodium.)
Advocates of next-generation nuclear power are optimistic that the first such reactors will come online before the end of the decade. Several of the leading proposals have run into financial and logistical troubles over the last couple of years, however. In November, NuScale canceled its flagship project at the Idaho National Laboratory. It had been on track to be the first commercial small modular reactor built in the U.S. but was thwarted by rising costs, which caused too many expected buyers of its electricity to pull their support.
Nuclear’s image is recovering globally, too. Some of the companies working on demonstration reactors in the U.S. have been outspoken about wanting to see their designs supplant fossil fuels and provide abundant energy all over the world. Meanwhile, many countries are devoting plenty of their own resources to nuclear power.
Japan, which shuttered its sizable nuclear fleet in the aftermath of the Fukushima accident, is slowly bringing some of its nuclear capacity back online. In December, Japanese regulators lifted an operational ban on the Kashiwazaki-Kariwa Nuclear Power Plant, the largest nuclear plant in the world.
Nuclear power is also enjoying renewed popularity in parts of Europe, including France and the U.K. In France, where the long-dominant technology has faltered in recent years, a half-dozen new nuclear power plants are in the works, and even more small modular reactors could follow. The U.K. is also planning a new wave of nuclear development.
Elsewhere, including in Germany, nuclear hasn’t found the same traction. After delaying the closure of its last three nuclear reactors amid natural gas shortages caused by the war in Ukraine, Germany closed the reactors last spring, eliciting a mixed reaction from environmental groups.
Meanwhile, China has close to 23 gigawatts of nuclear capacity under construction — the “largest nuclear expansion in history,” Jacopo Buongiorno, a professor of nuclear science and engineering at MIT, told CNBC last year.
It’s still early days for most of the world’s next-generation nuclear reactors. With even the most promising designs largely unproven, there’s plenty of uncertainty about where today’s projects will ultimately lead. That makes it tricky to predict what role nuclear power will play in the energy transition over the coming decades.
There’s plenty of interest in building more capacity, however. In December, at COP28, the U.S. and 24 other countries — including Japan, Korea, France and the UK — signed on to a goal of tripling global nuclear energy capacity by 2050 in order to stay on track to reach net-zero emissions by then. Nuclear plants could also be an important source of carbon-free energy for producing green hydrogen, a nascent industry that got a major boost from tax credits under the Inflation Reduction Act.
But the U.S. Energy Information Administration’s most recent capacity forecast projects that the total amount of electricity from the country’s nuclear plants will decline in the coming decades — representing just 13% of net power generation by 2050.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
What he wants them to do is one thing. What they’ll actually do is far less certain.
Donald Trump believes that tariffs have almost magical power to bring prosperity; as he said last month, “To me, the world’s most beautiful word in the dictionary is tariffs. It’s my favorite word.” In case anyone doubted his sincerity, before Thanksgiving he announced his intention to impose 25% tariffs on everything coming from Canada and Mexico, and an additional 10% tariff on all Chinese goods.
This is just the beginning. If the trade war he launched in his first term was haphazard and accomplished very little except costing Americans money, in his second term he plans to go much further. And the effects of these on clean energy and climate change will be anything but straightforward.
The theory behind tariffs is that by raising the price of an imported good, they give a stronger footing in the market; eventually, the domestic producer may no longer need the tariff to be competitive. Imposing a tariff means we’ve decided that a particular industry is important enough that it needs this kind of support — or as some might call it, protection — even if it means higher prices for a while.
The problem with across-the-board tariffs of the kind Trump proposes is that they create higher prices even for goods that are not being produced domestically and probably never will be. If tariffs raise the price of a six-pack of tube socks at Target from $9.99 to $14.99, it won’t mean we’ll start making tube socks in America again. It just means you’ll pay more. The same is often true for domestic industries that use foreign parts in their manufacturing: If no one is producing those parts domestically, their costs will unavoidably rise.
The U.S. imported over $3 trillion worth of goods in 2023, and $426 billion from China alone, so Trump’s proposed tariffs would represent hundreds of billions of dollars of increased costs. That’s before we account for the inevitable retaliatory tariffs, which is what we saw in Trump’s first term: He imposed tariffs on China, which responded by choking off its imports of American agricultural goods. In the end, the revenue collected from Trump’s tariffs went almost entirely to bailing out farmers whose export income disappeared.
The past almost-four years under Joe Biden have seen a series of back-and-forth moves in which new tariffs were announced, other tariffs were increased, exemptions were removed and reinstated. For instance, this May Biden increased the tariff on Chinese electric vehicles to over 100% while adding tariffs on certain EV batteries. But some of the provisions didn’t take effect right away, and only certain products were affected, so the net economic impact was minimal. And there’s been nothing like an across-the-board tariff.
It’s reasonable to criticize Biden’s tariff policies related to climate. But his administration was trying to navigate a dilemma, serving two goals at once: reducing emissions and promoting the development of domestic clean energy technology. Those goals are not always in alignment, at least in the short run, which we can see in the conflict within the solar industry. Companies that sell and install solar equipment benefit from cheap Chinese imports and therefore oppose tariffs, while domestic manufacturers want the tariffs to continue so they can be more competitive. The administration has attempted to accommodate both interests with a combination of subsidies to manufacturers and tariffs on certain kinds of imports — with exemptions peppered here and there. It’s been a difficult balancing act.
Then there are electric vehicles. The world’s largest EV manufacturer is Chinese company BYD, but if you haven’t seen any of their cars on the road, it’s because existing tariffs make it virtually impossible to import Chinese EVs to the United States. That will continue to be the case under Trump, and it would have been the case if Kamala Harris had been elected.
On one hand, it’s important for America to have the strongest possible green industries to insulate us from future supply shocks and create as many jobs-of-the-future as possible. On the other hand, that isn’t necessarily the fastest route to emissions reductions. In a world where we’ve eliminated all tariffs on EVs, the U.S. market would be flooded with inexpensive, high-quality Chinese EVs. That would dramatically accelerate adoption, which would be good for the climate.
But that would also deal a crushing blow to the American car industry, which is why neither party will allow it. What may happen, though, is that Chinese car companies may build factories in Mexico, or even here in the U.S., just as many European and Japanese companies have, so that their cars wouldn’t be subject to tariffs. That will take time.
Of course, whatever happens will depend on Trump following through with his tariff promise. We’ve seen before how he declares victory even when he only does part of what he promised, which could happen here. Once he begins implementing his tariffs, his administration will be immediately besieged by a thousand industries demanding exemptions, carve-outs, and delays in the tariffs that affect them. Many will have powerful advocates — members of Congress, big donors, and large groups of constituents — behind them. It’s easy to imagine how “across-the-board” tariffs could, in practice, turn into Swiss cheese.
There’s no way to know yet which parts of the energy transition will be in the cheese, and which parts will be in the holes. The manufacturers can say that helping them will stick it to China; the installers may not get as friendly an audience with Trump and his team. And the EV tariffs certainly aren’t going anywhere.
There’s a great deal of uncertainty, but one thing is clear: This is a fight that will continue for the entirety of Trump’s term, and beyond.
Give the people what they want — big, family-friendly EVs.
The star of this year’s Los Angeles Auto Show was the Hyundai Ioniq 9, a rounded-off colossus of an EV that puts Hyundai’s signature EV styling on a three-row SUV cavernous enough to carry seven.
I was reminded of two years ago, when Hyundai stole the L.A. show with a different EV: The reveal of Ioniq 6, its “streamliner” aerodynamic sedan that looked like nothing else on the market. By comparison, Ioniq 9 is a little more banal. It’s a crucial vehicle that will occupy the large end of Hyundai's excellent and growing lineup of electric cars, and one that may sell in impressive numbers to large families that want to go electric. Even with all the sleek touches, though, it’s not quite interesting. But it is big, and at this moment in electric vehicles, big is what’s in.
The L.A. show is one the major events on the yearly circuit of car shows, where the car companies traditionally reveal new models for the media and show off their whole lineups of vehicles for the public. Given that California is the EV capital of America, carmakers like to talk up their electric models here.
Hyundai’s brand partner, Kia, debuted a GT performance version of its EV9, adding more horsepower and flashy racing touches to a giant family SUV. Jeep reminded everyone of its upcoming forays into full-size and premium electric SUVs in the form of the Recon and the Wagoneer S. VW trumpeted the ID.Buzz, the long-promised electrified take on the classic VW Microbus that has finally gone on sale in America. The VW is the quirkiest of the lot, but it’s a design we’ve known about since 2017, when the concept version was revealed.
Boring isn’t the worst thing in the world. It can be a sign of a maturing industry. At auto shows of old, long before this current EV revolution, car companies would bring exotic, sci-fi concept cars to dial up the intrigue compared to the bread-and-butter, conservatively styled vehicles that actually made them gobs of money. During the early EV years, electrics were the shiny thing to show off at the car show. Now, something of the old dynamic has come to the electric sector.
Acura and Chrysler brought wild concepts to Los Angeles that were meant to signify the direction of their EVs to come. But most of the EVs in production looked far more familiar. Beyond the new hulking models from Hyundai and Kia, much of what’s on offer includes long-standing models, but in EV (Chevy Equinox and Blazer) or plug-in hybrid (Jeep Grand Cherokee and Wrangler) configurations. One of the most “interesting” EVs on the show floor was the Cybertruck, which sat quietly in a barely-staffed display of Tesla vehicles. (Elon Musk reveals his projects at separate Tesla events, a strategy more carmakers have begun to steal as a way to avoid sharing the spotlight at a car show.)
The other reason boring isn’t bad: It’s what the people want. The majority of drivers don’t buy an exotic, fun vehicle. They buy a handsome, spacious car they can afford. That last part, of course, is where the problem kicks in.
We don’t yet know the price of the Ioniq 9, but it’s likely to be in the neighborhood of Kia’s three-row electric, the EV9, which starts in the mid-$50,000s and can rise steeply from there. Stellantis’ forthcoming push into the EV market will start with not only pricey premium Jeep SUVs, but also some fun, though relatively expensive, vehicles like the heralded Ramcharger extended-range EV truck and the Dodge Charger Daytona, an attempt to apply machismo-oozing, alpha-male muscle-car marketing to an electric vehicle.
You can see the rationale. It costs a lot to build a battery big enough to power a big EV, so they’re going to be priced higher. Helpfully for the car brands, Americans have proven they will pay a premium for size and power. That’s not to say we’re entering an era of nothing but bloated EV battleships. Models such as the overpowered electric Dodge Charger and Kia EV9 GT will reveal the appetite for performance EVs. Smaller models like the revived Chevy Bolt and Kia’s EV3, already on sale overseas, are coming to America, tax credit or not.
The question for the legacy car companies is where to go from here. It takes years to bring a vehicle from idea to production, so the models on offer today were conceived in a time when big federal support for EVs was in place to buoy the industry through its transition. Now, though, the automakers have some clear uncertainty about what to say.
Chevy, having revealed new electrics like the Equinox EV elsewhere, did not hold a media conference at the L.A. show. Ford, which is having a hellacious time losing money on its EVs, used its time to talk up combustion vehicles including a new version of the palatial Expedition, one of the oversized gas-guzzlers that defined the first SUV craze of the 1990s.
If it’s true that the death of federal subsidies will send EV sales into a slump, we may see messaging from Detroit and elsewhere that feels decidedly retro, with very profitable combustion front-and-center and the all-electric future suddenly less of a talking point. Whatever happens at the federal level, EVs aren’t going away. But as they become a core part of the car business, they are going to get less exciting.
Current conditions: Parts of southwest France that were freezing last week are now experiencing record high temperatures • Forecasters are monitoring a storm system that could become Australia’s first named tropical cyclone of this season • The Colorado Rockies could get several feet of snow today and tomorrow.
This year’s Atlantic hurricane season caused an estimated $500 billion in damage and economic losses, according to AccuWeather. “For perspective, this would equate to nearly 2% of the nation’s gross domestic product,” said AccuWeather Chief Meteorologist Jon Porter. The figure accounts for long-term economic impacts including job losses, medical costs, drops in tourism, and recovery expenses. “The combination of extremely warm water temperatures, a shift toward a La Niña pattern and favorable conditions for development created the perfect storm for what AccuWeather experts called ‘a supercharged hurricane season,’” said AccuWeather lead hurricane expert Alex DaSilva. “This was an exceptionally powerful and destructive year for hurricanes in America, despite an unusual and historic lull during the climatological peak of the season.”
AccuWeather
This year’s hurricane season produced 18 named storms and 11 hurricanes. Five hurricanes made landfall, two of which were major storms. According to NOAA, an “average” season produces 14 named storms, seven hurricanes, and three major hurricanes. The season comes to an end on November 30.
California Gov. Gavin Newsom announced yesterday that if President-elect Donald Trump scraps the $7,500 EV tax credit, California will consider reviving its Clean Vehicle Rebate Program. The CVRP ran from 2010 to 2023 and helped fund nearly 600,000 EV purchases by offering rebates that started at $5,000 and increased to $7,500. But the program as it is now would exclude Tesla’s vehicles, because it is aimed at encouraging market competition, and Tesla already has a large share of the California market. Tesla CEO Elon Musk, who has cozied up to Trump, called California’s potential exclusion of Tesla “insane,” though he has said he’s okay with Trump nixing the federal subsidies. Newsom would need to go through the State Legislature to revive the program.
President-elect Donald Trump said yesterday he would impose steep new tariffs on all goods imported from China, Canada, and Mexico on day one of his presidency in a bid to stop “drugs” and “illegal aliens” from entering the United States. Specifically, Trump threatened Canada and Mexico each with a 25% tariff, and China with a 10% hike on existing levies. Such moves against three key U.S. trade partners would have major ramifications across many sectors, including the auto industry. Many car companies import vehicles and parts from plants in Mexico. The Canadian government responded with a statement reminding everyone that “Canada is essential to U.S. domestic energy supply, and last year 60% of U.S. crude oil imports originated in Canada.” Tariffs would be paid by U.S. companies buying the imported goods, and those costs would likely trickle down to consumers.
Amazon workers across the world plan to begin striking and protesting on Black Friday “to demand justice, fairness, and accountability” from the online retail giant. The protests are organized by the UNI Global Union’s Make Amazon Pay Campaign, which calls for better working conditions for employees and a commitment to “real environmental sustainability.” Workers in more than 20 countries including the U.S. are expected to join the protests, which will continue through Cyber Monday. Amazon’s carbon emissions last year totalled 68.8 million metric tons. That’s about 3% below 2022 levels, but more than 30% above 2019 levels.
Researchers from MIT have developed an AI tool called the “Earth Intelligence Engine” that can simulate realistic satellite images to show people what an area would look like if flooded by extreme weather. “Visualizing the potential impacts of a hurricane on people’s homes before it hits can help residents prepare and decide whether to evacuate,” wrote Jennifer Chu at MIT News. The team found that AI alone tended to “hallucinate,” generating images of flooding in areas that aren’t actually susceptible to a deluge. But when combined with a science-backed flood model, the tool became more accurate. “One of the biggest challenges is encouraging people to evacuate when they are at risk,” said MIT’s Björn Lütjens, who led the research. “Maybe this could be another visualization to help increase that readiness.” The tool is still in development and is available online. Here is an image it generated of flooding in Texas:
Maxar Open Data Program via Gupta et al., CVPR Workshop Proceedings. Lütjens et al., IEEE TGRS
A new installation at the Centre Pompidou in Paris lets visitors listen to the sounds of endangered and extinct animals – along with the voice of the artist behind the piece, the one and only Björk.