You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Biden administration tackles one of the biggest barriers to the energy transition: the dread interconnection queue.
It may soon be easier — and cheaper — to build a large-scale clean energy project in the United States.
Under a new and little-noticed update to a climate tax credit published last week, the government will now pick up some of the cost of connecting a new wind or solar project to the power grid.
The policy could ease one of the biggest barriers to the rapid transformation of the electricity system to fight climate change. It could save clean energy developers hundreds of millions in fees while potentially speeding the deployment of new renewable and low-carbon energy sources across the country.
The Treasury Department, which published the new rules governing the tax credit, declined to comment and referred me to earlier remarks from administration officials. In a statement last week, Deputy Treasury Secretary Wally Adeyemo said that the agency sought to give companies “clarity and certainty needed to secure financing and advance clean energy projects nationwide.”
The guidance would be particularly helpful for “small scale projects that need to connect to the grid,” he said. But a close reading of the guidance suggests that it may go further and help medium or large scale projects, deploying even more clean electricity to the grid than proponents had once envisioned.
Get one great story in your inbox every day:
The new tax credit appears to address a major obstacle to decarbonizing the grid: It’s very expensive to connect new wind, solar, and other resources to the electricity grid.
When a company proposes a new large-scale solar or wind project, it must apply to the local power-grid authority for permission to connect its new project to the grid.
This process — called the “interconnection queue” — can take nearly half a decade to complete in some parts of the country. More than 8,100 proposed projects — overwhelmingly wind and solar facilities — were waiting in the queue nationwide at last count.
Construction on those projects cannot begin until they receive approval. Only about one-fifth of wind and solar projects that enter the interconnection queue ultimately get built, according to a recent study from Lawrence Berkeley National Laboratory.
Even when a developer finally gets to the front of the line, the process is not over. Because America’s electricity law was written decades ago — when utilities added massive coal-fired power plants or hydroelectric dams to the grid — developers must pay the full cost of upgrading the entire local grid to accept electricity from a new project, even if that project generates relatively little electricity. These “network upgrade” costs are presented to developers as a surprise bill when they reach the end of the queue.
As the grid has gotten older and more congested, these costs have soared, Rob Gramlich, the founder and president of Grid Strategies, told me. A large solar project that costs about $180 million might now pay an extra $30 or $40 million in surprise network-upgrade costs, he said.
As these costs have rapidly increased, they have outstripped wind and solar developers’ ability to predictably budget for them. They are also sometimes large enough to kill the economics of a project.
In the Lawrence Berkeley study, researchers found that wind projects withdrawn from the queue had interconnection costs sometimes 10 times higher than projects that ultimately got built. Earlier this year, a renewable executive told The New York Times that interconnection costs have become the “no. 1 project killer.”
Those withdrawals can clog up the queue further, because proposals that cannot realistically pay the network costs slow down the process for everyone behind them.
But that could soon change. Under the new proposed guidance, at least 30% of a project’s interconnection costs could be covered by the investment tax credit, a climate-friendly subsidy in the Inflation Reduction Act.
While the investment tax credit was already known to cover small projects, the guidance suggests that it can now be used much more broadly. That could save some of the largest solar and wind projects more than $10 million.
Although this new tax credit will not address the underlying cause of high interconnection costs, it will “take the sting out of those charges,” Gramlich said, adding that it will “surely lead to many projects moving forward to construction instead of giving up and withdrawing their interconnection request.”
Utilities should like the new tax credit as well, he added, because it will help them build and own more of their own transmission lines. But the interconnection issue will only be totally solved when the Federal Energy Regulatory Commission, which oversees the country’s electricity grids, writes new rules governing the process, he said.
The investment tax credit has long been one of the workhorses of American clean-energy policy. First created during the 1970s oil crisis, the tax credit initially paid businesses a 10% subsidy to switch to equipment that did not burn oil or natural gas.
The policy bumped along for decades, covering a fraction of the cost of a hodgepodge of clean-ish energy technologies. But last year, the Inflation Reduction Act made sweeping changes to the tax credit, allowing a huge array of climate-friendly energy sources to cover 30% of their costs.
The Treasury Department published draft rules governing those changes last week. The fact that the credit can now be used to pay for interconnection costs for large clean energy projects has not been previously reported.
The change rests on two terms used in the Inflation Reduction Act: “energy property” and “energy project.”
Under the climate law, an “energy property” is any kind of energy facility that qualifies for a 30% investment tax credit. A solar array, a wind turbine, and an industrial battery can all be an “energy property.” So, too, can certain types of electrical equipment — such as transformers or wiring — that might be shared across a clean energy installation.
An “energy project,” meanwhile, is defined in the law as one or more energy properties that connect to form a larger facility.
The Inflation Reduction Act made one more big change to the tax credit. Under the law, any “energy property” of less than five megawatts can have 30% of its interconnection costs covered by the investment tax credit.
This change, while celebrated by climate advocates, was previously assumed to cover only the costs of connecting a small renewable project — like a solar array on a warehouse roof — to the grid. For context, 5 megawatts is enough electricity to power perhaps 2,000 homes.
But remember that an “energy project” can be made up of several smaller and interdependent “energy properties.” So what if a solar developer, say, connected many small solar arrays — each an “energy property” — together into a single “energy project”? Would they be able to cover their interconnection costs under the law?
The new guidance says yes. Any “energy project” — even one large enough to power tens of thousands of homes — can qualify to have some of its interconnection costs covered as long as it is made up of smaller “energy properties” that are each no larger than five megawatts.
“If an energy project comprised of multiple energy properties has a combined nameplate capacity in excess of five megawatts, each of the energy properties would nonetheless be eligible to include amounts paid or incurred by the taxpayer for qualified interconnection property if each energy property satisfies the Five-Megawatt Limitation,” the guidance says.
The guidance goes on to say that the cost “to modify and upgrade the transmission system” can be covered by the tax credit even if those investments are made “at or beyond” the project’s connection to the grid.
Although the guidance is written in a technology-neutral way, it may not benefit all clean energy technologies equally. While a large solar or onshore wind farm can be broken into many five-megawatt segments, each offshore wind turbine generates more than five megawatts of electricity.
Each offshore turbine, in essence, may be too large to qualify as a standalone “energy property.” That said, the new guidance includes other changes that are more favorable to the offshore wind industry.
The guidance remains a draft proposal and has not yet been finalized. But due to an unusual attribute of federal tax law, companies can sometimes rely on proposed tax regulations as long as no final rule has yet been published.
Across the United States, more than 1.4 terawatts of proposed wind and solar projects are currently waiting in interconnection queues, according to the Berkeley National Lab study. That is more than enough to achieve President Biden’s goal of cutting power-sector carbon emissions more than 80% by 2030.
Read more about the investment tax credit:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Current conditions: The remnants of Tropical Storm Chantal will bring heavy rain and potential flash floods to the Carolinas, southeastern Virginia, and southern Delaware through Monday night • Two people are dead and 300 injured after Typhoon Danas hit Taiwan • Life-threatening rainfall is expected to last through Monday in Central Texas.
Jim Vondruska/Getty Images
The flash floods in Central Texas are expected to become one of the deadliest such events in the past 100 years, with authorities updating the death toll to 82 people on Sunday night. Another 41 people are still missing after the storms, which began Thursday night and raised the Guadalupe River some 26 feet in less than an hour, providing little chance for holiday weekend campers and RVers to escape.
Although it’s far too soon to definitively attribute the disaster to climate change, a warmer atmosphere is capable of holding more moisture and producing heavy bursts of life-threatening rainfall. Disasters like the one in Texas are one of the “hardest things to predict that’s becoming worse faster than almost anything else in a warming climate, and it’s at a moment where we’re defunding the ability of meteorologists and emergency managers to coordinate,” Daniel Swain of the University of California Agriculture and Natural Resources told the Los Angeles Times. Meteorologists who spoke to Wired argued that the National Weather Service “accurately predicted the risk of flooding in Texas and could not have foreseen the extreme severity of the storm” ahead of the event, while The New York Times noted that staffing shortages at the agency following President Trump’s layoffs potentially resulted in “the loss of experienced people who would typically have helped communicate with local authorities in the hours after flash flood warnings were issued overnight.”
President Trump announced this weekend that his administration plans to send up to 15 letters on Monday to important trade partners detailing their tariff rates. Though Trump didn’t specify which countries would receive such letters or what the rates could be, he said the tariffs would go into effect on August 1 — an extension from the administration’s 90-day pause through July 9 — and range “from maybe 60% or 70% tariffs to 10% and 20% tariffs.” Treasury Secretary Scott Bessent added on CNN on Sunday that the administration would subsequently send an additional round of letters to 100 less significant trade partners, warning them that “if you don’t move things along” with trade negotiations, “then on August 1, you will boomerang back to your April 2 tariff level.” Trump’s proposed tariffs have already rattled industries as diverse as steel and aluminum, oil, plastics, agriculture, and bicycles, as we’ve covered extensively here at Heatmap. Trump’s weekend announcement also sent jitters through global markets on Monday morning.
President Trump’s gutting of the Inflation Reduction Act with the signing of the budget reconciliation bill last week will add an extra 7 billion tons of emissions to the atmosphere by 2030, a new analysis by Climate Brief has found. The rollback on renewable energy credits and policy means that “U.S. emissions are now set to drop to just 3% below current levels by 2030 — effectively flatlining — rather than falling 40% as required to hit the now-defunct [Paris Agreement] target,” Carbon Brief notes. As a result, the U.S. will be about 2 billion tons short of its emissions goal by 2030, adding an emissions equivalent of “roughly the annual output of Indonesia, the world’s sixth-largest emitter.”
To reach its conclusions, Carbon Brief utilized modeling by Princeton University’s REPEAT Project, which examined how the current obstacles facing U.S. wind and solar energy will impact U.S. emissions targets, as well as the likely slowdown in electric vehicle sales and energy efficiency upgrades due to the removal of subsidies. “Under this new set of U.S. policies, emissions are only expected to be 20% lower than 2005 levels by 2030,” Carbon Brief writes.
Engineering giant SKF announced late last week that it had set a new world record for tidal turbine reliability, with its systems in northern Scotland having operated continuously for over six years at 1.5 megawatts “without the need for unplanned or disruptive maintenance.” The news represents a significant milestone for the technology since “harsh conditions, high maintenance, and technical challenges” have traditionally made tidal systems difficult to implement in the real world, Interesting Engineering notes. The pilot program, MayGen, is operated by SAE Renewables and aims, as its next step, to begin deploying 3-megawatt powertrains for 30 turbines across Scotland, France, and Japan starting next year.
Satellites monitoring the Southern Ocean have detected for the first time a collapse and reversal of a major current in the Atlantic Meridional Overturning Circulation. “This is an unprecedented observation and a potential game-changer,” said physicist Marilena Oltmanns, the lead author of a paper on the finding, adding that the changes could “alter the Southern Ocean’s capacity to sequester heat and carbon.”
A breakthrough in satellite ocean observation technology enabled scientists to recognize that, since 2016, the Southern Ocean has become saltier, even as Antarctic sea ice has melted at a rate comparable to the loss of Greenland’s ice. The two factors have altered the Southern Ocean’s properties like “we’ve never seen before,” Antonio Turiel, a co-author of the study, explained. “While the world is debating the potential collapse of the AMOC in the North Atlantic, we’re seeing that the Southern Ocean is drastically changing, as sea ice coverage declines and the upper ocean is becoming saltier,” he went on. “This could have unprecedented global climate impacts.” Read more about the oceanic feedback loop and its potential global consequences at Science Daily, here.
The French public research university Sciences Po will open the Paris Climate School in September 2026, making it the first school in Europe to offer a “degree in humanities and social sciences dedicated to ecological transition.” The first cohort will comprise 100 master’s students in an English-language program. “Faced with the ecological emergency, it is essential to train a new generation of leaders who can think and act differently,” said Laurence Tubiana, the dean of the Paris Climate School.
A fifth of U.S. counties now restrict renewables development, according to exclusive data gathered by Heatmap Pro.
A solar farm 40 minutes south of Columbus, Ohio.
A grid-scale battery near the coast of Nassau County, Long Island.
A sprawling wind farm — capable of generating enough electricity to power 100,000 homes — at the northern edge of Nebraska.
These projects — and hundreds of others — will never get built in the United States. They were blocked and ultimately killed by a regulatory sea-change that has reshaped how local governments consider and approve energy projects. One by one, counties and municipalities across the country are passing laws that heavily curtail the construction of new renewable power plants.
These laws are slowing the energy transition and raising costs for utility ratepayers. And the problem is getting worse.
The development of new wind and solar power plants is now heavily restricted or outright banned in about one in five counties across the country, according to a new and extensive survey of public records and local ordinances conducted by Heatmap News.
“That’s a lot,” Nicholas Bagley, a professor at the University of Michigan Law School, told us. Bagley said the “rash of new land use restrictions” owes partly to the increasing politicization of renewable energy.
Across the country, separate rules restrict renewables construction in 605 counties. In some cases, the rules greatly constrain where renewables can be built, such as by requiring that wind turbines must be placed miles from homes, or that solar farms may not take up more than 1% of a county’s agricultural land. In hundreds of other cases, the rules simply forbid new wind or solar construction at all.
Even in the liberal Northeast, where climate concern is high and municipalities broadly control the land use process, the number of restrictions is rising. At least 59 townships and municipalities have curtailed or outright banned new wind and solar farms across the Northeast, according to Heatmap’s survey.
Even though America has built new wind and solar projects for decades, the number of counties restricting renewable development has nearly doubled since 2022.
When the various state, county, and municipality-level ordinances are combined, roughly 17% of the total land mass of the continental United States has been marked as off limits to renewables construction.
These figures have not been previously reported. Over the past 12 months, our energy intelligence platform Heatmap Pro has conducted what it believes to be the most comprehensive survey of county and municipality-level renewables restrictions in the United States. In part, that research included surveys of existing databases of local news and county laws, including those prepared by the Sabin Center for Climate Change Law at Columbia University.
But our research team has also called thousands of counties, many of whose laws were not in existing public databases, and we have updated our data in real time as counties passed ordinances and opposed projects progress (or not) through the zoning process. This data is normally available to companies and individuals who subscribe to Heatmap Pro. In this story, we are making a high-level summary of this data available to the public for the first time.
Restrictions have proliferated in all regions of the country.
Forty counties in Virginia alone now have an anti-renewable law on the books, effectively halting solar development in large portions of the state, even as the region experiences blistering electricity load growth.
These anti-solar laws have even begun to slow down energy development across the sunny Southwest. Counties in Nevada and Arizona have rejected new solar development in the same parts of the state that have already seen a high number of solar projects, our data show. Since President Trump took office in January, the effect of these local rules have become more acute — while solar developers could previously avoid the rules by proposing projects on federal land, a permitting slowdown at the Bureau of Land Management is now styming solar projects of all types in the region, as our colleague Jael Holzman has reported.
In the Northeast and on the West Coast, where Democrats control most state governments, towns and counties are still successfully fighting and cancelling dozens of new energy projects. Battery electricity storage systems, or BESS projects, now draw particular ire. The high-profile case of the battery fire in Moss Landing, California, in January has led to a surge of local opposition to BESS projects, our data shows. So far in 2025, residents have cited the Moss Landing case when fighting at least six different BESS projects nationwide.
That’s what happened with Jupiter Power, the battery project proposed in Nassau County, Long Island. The 275-megawatt project was first proposed in 2022 for the Town of Oyster Bay, New York. It would have replaced a petroleum terminal and improved the resilience of the local power grid.
But opposed residents began attending public meetings to agitate about perceived fire and environmental risks, and in spring 2024 successfully lobbied the town to pass a six-month moratorium on battery storage systems. The developer of the battery storage system, Jupiter Power, announced it would withdraw after the town passed two consecutive extensions to the moratorium and residents continued agitating for tighter restrictions.
That pattern — a town passes a temporary moratorium that it repeatedly extends — is how many projects now die in the United States.
The Nebraska wind project, North Fork Wind, was effectively shuttered when Knox County passed a permanent wind-energy ban. And the solar project south of Columbus, Ohio? It died when the Ohio Power Siting Board ruled that “that any benefits to the local community are outweighed by public opposition” to the project, which would have generated 70 megawatts, enough to power about 9,000 homes.
The developers of both of these projects are now waging lengthy and expensive legal appeals to save them; neither has won yet. Even in cases where the developer ultimately prevails against a local law, opposition can waste years and raise the final cost of a project by millions of dollars.
Our Heatmap Pro platform models opposition history alongside demographic, employment, voting, and exclusive polling data to quantify the risk a project will face in every county in the country, allowing developers to avoid places where they are likely to be unsuccessful and strategize for those where they have a chance.
Access to the full project- and county-level data and associated risk assessments is available via Heatmap Pro.
And more on the week’s biggest conflicts around renewable energy projects.
1. Jackson County, Kansas – A judge has rejected a Hail Mary lawsuit to kill a single solar farm over it benefiting from the Inflation Reduction Act, siding with arguments from a somewhat unexpected source — the Trump administration’s Justice Department — which argued that projects qualifying for tax credits do not require federal environmental reviews.
2. Portage County, Wisconsin – The largest solar project in the Badger State is now one step closer to construction after settling with environmentalists concerned about impacts to the Greater Prairie Chicken, an imperiled bird species beloved in wildlife conservation circles.
3. Imperial County, California – The board of directors for the agriculture-saturated Imperial Irrigation District in southern California has approved a resolution opposing solar projects on farmland.
4. New England – Offshore wind opponents are starting to win big in state negotiations with developers, as officials once committed to the energy sources delay final decisions on maintaining contracts.
5. Barren County, Kentucky – Remember the National Park fighting the solar farm? We may see a resolution to that conflict later this month.
6. Washington County, Arkansas – It seems that RES’ efforts to build a wind farm here are leading the county to face calls for a blanket moratorium.
7. Westchester County, New York – Yet another resort town in New York may be saying “no” to battery storage over fire risks.