You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
The Biden administration tackles one of the biggest barriers to the energy transition: the dread interconnection queue.
It may soon be easier — and cheaper — to build a large-scale clean energy project in the United States.
Under a new and little-noticed update to a climate tax credit published last week, the government will now pick up some of the cost of connecting a new wind or solar project to the power grid.
The policy could ease one of the biggest barriers to the rapid transformation of the electricity system to fight climate change. It could save clean energy developers hundreds of millions in fees while potentially speeding the deployment of new renewable and low-carbon energy sources across the country.
The Treasury Department, which published the new rules governing the tax credit, declined to comment and referred me to earlier remarks from administration officials. In a statement last week, Deputy Treasury Secretary Wally Adeyemo said that the agency sought to give companies “clarity and certainty needed to secure financing and advance clean energy projects nationwide.”
The guidance would be particularly helpful for “small scale projects that need to connect to the grid,” he said. But a close reading of the guidance suggests that it may go further and help medium or large scale projects, deploying even more clean electricity to the grid than proponents had once envisioned.
Get one great story in your inbox every day:
The new tax credit appears to address a major obstacle to decarbonizing the grid: It’s very expensive to connect new wind, solar, and other resources to the electricity grid.
When a company proposes a new large-scale solar or wind project, it must apply to the local power-grid authority for permission to connect its new project to the grid.
This process — called the “interconnection queue” — can take nearly half a decade to complete in some parts of the country. More than 8,100 proposed projects — overwhelmingly wind and solar facilities — were waiting in the queue nationwide at last count.
Construction on those projects cannot begin until they receive approval. Only about one-fifth of wind and solar projects that enter the interconnection queue ultimately get built, according to a recent study from Lawrence Berkeley National Laboratory.
Even when a developer finally gets to the front of the line, the process is not over. Because America’s electricity law was written decades ago — when utilities added massive coal-fired power plants or hydroelectric dams to the grid — developers must pay the full cost of upgrading the entire local grid to accept electricity from a new project, even if that project generates relatively little electricity. These “network upgrade” costs are presented to developers as a surprise bill when they reach the end of the queue.
As the grid has gotten older and more congested, these costs have soared, Rob Gramlich, the founder and president of Grid Strategies, told me. A large solar project that costs about $180 million might now pay an extra $30 or $40 million in surprise network-upgrade costs, he said.
As these costs have rapidly increased, they have outstripped wind and solar developers’ ability to predictably budget for them. They are also sometimes large enough to kill the economics of a project.
In the Lawrence Berkeley study, researchers found that wind projects withdrawn from the queue had interconnection costs sometimes 10 times higher than projects that ultimately got built. Earlier this year, a renewable executive told The New York Times that interconnection costs have become the “no. 1 project killer.”
Those withdrawals can clog up the queue further, because proposals that cannot realistically pay the network costs slow down the process for everyone behind them.
But that could soon change. Under the new proposed guidance, at least 30% of a project’s interconnection costs could be covered by the investment tax credit, a climate-friendly subsidy in the Inflation Reduction Act.
While the investment tax credit was already known to cover small projects, the guidance suggests that it can now be used much more broadly. That could save some of the largest solar and wind projects more than $10 million.
Although this new tax credit will not address the underlying cause of high interconnection costs, it will “take the sting out of those charges,” Gramlich said, adding that it will “surely lead to many projects moving forward to construction instead of giving up and withdrawing their interconnection request.”
Utilities should like the new tax credit as well, he added, because it will help them build and own more of their own transmission lines. But the interconnection issue will only be totally solved when the Federal Energy Regulatory Commission, which oversees the country’s electricity grids, writes new rules governing the process, he said.
The investment tax credit has long been one of the workhorses of American clean-energy policy. First created during the 1970s oil crisis, the tax credit initially paid businesses a 10% subsidy to switch to equipment that did not burn oil or natural gas.
The policy bumped along for decades, covering a fraction of the cost of a hodgepodge of clean-ish energy technologies. But last year, the Inflation Reduction Act made sweeping changes to the tax credit, allowing a huge array of climate-friendly energy sources to cover 30% of their costs.
The Treasury Department published draft rules governing those changes last week. The fact that the credit can now be used to pay for interconnection costs for large clean energy projects has not been previously reported.
The change rests on two terms used in the Inflation Reduction Act: “energy property” and “energy project.”
Under the climate law, an “energy property” is any kind of energy facility that qualifies for a 30% investment tax credit. A solar array, a wind turbine, and an industrial battery can all be an “energy property.” So, too, can certain types of electrical equipment — such as transformers or wiring — that might be shared across a clean energy installation.
An “energy project,” meanwhile, is defined in the law as one or more energy properties that connect to form a larger facility.
The Inflation Reduction Act made one more big change to the tax credit. Under the law, any “energy property” of less than five megawatts can have 30% of its interconnection costs covered by the investment tax credit.
This change, while celebrated by climate advocates, was previously assumed to cover only the costs of connecting a small renewable project — like a solar array on a warehouse roof — to the grid. For context, 5 megawatts is enough electricity to power perhaps 2,000 homes.
But remember that an “energy project” can be made up of several smaller and interdependent “energy properties.” So what if a solar developer, say, connected many small solar arrays — each an “energy property” — together into a single “energy project”? Would they be able to cover their interconnection costs under the law?
The new guidance says yes. Any “energy project” — even one large enough to power tens of thousands of homes — can qualify to have some of its interconnection costs covered as long as it is made up of smaller “energy properties” that are each no larger than five megawatts.
“If an energy project comprised of multiple energy properties has a combined nameplate capacity in excess of five megawatts, each of the energy properties would nonetheless be eligible to include amounts paid or incurred by the taxpayer for qualified interconnection property if each energy property satisfies the Five-Megawatt Limitation,” the guidance says.
The guidance goes on to say that the cost “to modify and upgrade the transmission system” can be covered by the tax credit even if those investments are made “at or beyond” the project’s connection to the grid.
Although the guidance is written in a technology-neutral way, it may not benefit all clean energy technologies equally. While a large solar or onshore wind farm can be broken into many five-megawatt segments, each offshore wind turbine generates more than five megawatts of electricity.
Each offshore turbine, in essence, may be too large to qualify as a standalone “energy property.” That said, the new guidance includes other changes that are more favorable to the offshore wind industry.
The guidance remains a draft proposal and has not yet been finalized. But due to an unusual attribute of federal tax law, companies can sometimes rely on proposed tax regulations as long as no final rule has yet been published.
Across the United States, more than 1.4 terawatts of proposed wind and solar projects are currently waiting in interconnection queues, according to the Berkeley National Lab study. That is more than enough to achieve President Biden’s goal of cutting power-sector carbon emissions more than 80% by 2030.
Read more about the investment tax credit:
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Recovering from the Los Angeles wildfires will be expensive. Really expensive. Insurance analysts and banks have already produced a wide range of estimates of both what insurance companies will pay out and overall economic loss. AccuWeatherhas put out an eye-catching preliminary figure of $52 billion to $57 billion for economic losses, with the service’s chief meteorologist saying that the fires have the potential to “become the worst wildfire in modern California history based on the number of structures burned and economic loss.” On Thursday, J.P. Morgan doubled its previous estimate for insured losses to $20 billion, with an economic loss figure of $50 billion — about the gross domestic product of the country of Jordan.
The startlingly high loss figures from a fire that has only lasted a few days and is (relatively) limited in scope show just how distinctly devastating an urban fire can be. Enormous wildfires thatcover millions of acres like the 2023 Canadian wildfires can spew ash and particulate matter all over the globe and burn for months, darkening skies and clogging airways in other countries. And smaller — and far deadlier fires — than those still do not produce the same financial roll.
It’s in coastal Southern California where you find large population centers areas known by all to be at extreme risk of fire. And so a fire there can destroy a whole neighborhood in a few hours and put the state’s insurance system into jeopardy.
One reason why the projected economic impacts of the fires are so high is that the structures that have burned and the land those structures sit on are very valuable. Pacific Palisades, Malibu, and Santa Monica contain some of the most sought-after real estate on planet earth, with typical home prices over $2 million. Pacific Palisades itself has median home values of around $3 million, according to JPMorgan Chase.
The AccuWeather estimates put the economic damage for the Los Angeles fires at several times previous large, urban fires — the Maui wildfire in 2023 was estimated to cause around $14 billion of economic loss, for example — while the figure would be about a third or a quarter of a large hurricane, which tend to strike areas with millions of people in them across several states.
“The fires have not been contained thus far and continue to spread, implying that estimates of potential economic and insured losses are likely to increase,” the JPMorgan analysts wrote Thursday.
That level of losses would make the fires costlier in economic terms than the 2018 Butte County Camp Fire, whose insured losses of $10 billion made it California’s costliest at the time. That fire was far larger than the Los Angeles fires, spreading over 150,000 acres compared to just over 17,000 acres for the Palisades Fire and over 10,000 acres for the Eaton Fire. It also led to more than 80 deaths in the town of Paradise.
So far, around 2,000 homes have been destroyed,according to the Los Angeles Times,a fraction of the more than 19,000 structures affected by the Camp Fire. The difference in estimated losses comes from the fact that homes in Pacific Palisades weigh in at more than six times those in rural Butte, according to JPMorgan.
While insured losses get the lion’s share of attention when it comes to the cost impacts of a natural disaster, the potential damages go far beyond the balance sheet of insurers.
For one, it’s likely that many affected homeowners did not even carry insurance, either because their insurers failed to renew their existing policies or the homeowners simply chose to go without due to the high cost of what insurance they could find. “A larger than usual portion of the losses caused by the wildfires will be uninsured,” according to Morningstar DBRS, which estimated total insured losses at more than $8 billion. Many homeowners carry insurance from California’s backup FAIR Plan, which may itself come under financial pressure, potentially leading to assessments from the state’s policyholders to bolster its ability to pay claims.
AccuWeather arrived at its economic impact figure by looking not just at losses from property damage but also wages that go unearned due to economic activity slowing down or halting in affected areas, infrastructure that needs to be repaired, supply chain issues, and transportation snarls. Even when homes and businesses aren’t destroyed, people may be unable to work due to evacuations; businesses may close due to the dispersal of their customers or inability of their suppliers to make deliveries. Smoke inhalation can lead to short-, medium-, and long-term health impacts that take a dent out of overall economic activity.
The high level of insured losses, meanwhile, could mean that insurers’ will see less surplus and could have to pay more for reinsurance, Nancy Watkins, an actuary and wildfire expert at Milliman, told me in an email. This may mean that they would have to shed yet more policies “in order to avoid deterioration in their financial strength ratings,” just as California has been trying to lure insurers back with reforms to its dysfunctional insurance market.
The economic costs of the fire will likely be felt for years if not decades. While it would take an act of God far stronger than a fire to keep people from building homes on the slopes of the Santa Monica Mountains or off the Pacific Coast, the city that rebuilds may be smaller, more heavily fortified, and more expensive than the one that existed at the end of last year. And that’s just before the next big fire.
Suburban streets, exploding pipes, and those Santa Ana winds, for starters.
A fire needs three things to burn: heat, fuel, and oxygen. The first is important: At some point this week, for a reason we have yet to discover and may never will, a piece of flammable material in Los Angeles County got hot enough to ignite. The last is essential: The resulting fires, which have now burned nearly 29,000 acres, are fanned by exceptionally powerful and dry Santa Ana winds.
But in the critical days ahead, it is that central ingredient that will preoccupy fire managers, emergency responders, and the public, who are watching their homes — wood-framed containers full of memories, primary documents, material wealth, sentimental heirlooms — transformed into raw fuel. “Grass is one fuel model; timber is another fuel model; brushes are another — there are dozens of fuel models,” Bobbie Scopa, a veteran firefighter and author of the memoir Both Sides of the Fire Line, told me. “But when a fire goes from the wildland into the urban interface, you’re now burning houses.”
This jump from chaparral shrubland into neighborhoods has frustrated firefighters’ efforts to gain an upper hand over the L.A. County fires. In the remote wilderness, firefighters can cut fire lines with axes, pulaskis, and shovels to contain the blaze. (A fire’s “containment” describes how much firefighters have encircled; 25% containment means a quarter of the fire perimeter is prevented from moving forward by manmade or natural fire breaks.)
Once a fire moves into an urban community and starts spreading house to house, however, as has already happened in Santa Monica, Pasadena, and other suburbs of Los Angeles, those strategies go out the window. A fire break starves a fire by introducing a gap in its fuel; it can be a cleared strip of vegetation, a river, or even a freeway. But you can’t just hack a fire break through a neighborhood. “Now you’re having to use big fire engines and spray lots of water,” Scopa said, compared to the wildlands where “we do a lot of firefighting without water.”
Water has already proven to be a significant issue in Los Angeles, where many hydrants near Palisades, the biggest of the five fires, had already gone dry by 3:00 a.m. Wednesday. “We’re fighting a wildfire with urban water systems, and that is really challenging,” Los Angeles Department of Water and Power CEO Janisse Quiñones explained in a news conference later that same day.
LADWP said it had filled its 114 water storage tanks before the fires started, but the city’s water supply was never intended to stop a 17,000-acre fire. The hydrants are “meant to put out a two-house fire, a one-house fire, or something like that,” Faith Kearns, a water and wildfire researcher at Arizona State University, told me. Additionally, homeowners sometimes leave their sprinklers on in the hopes that it will help protect their house, or try to fight fires with their own hoses. At a certain point, the system — just like the city personnel — becomes overwhelmed by the sheer magnitude of the unfolding disaster.
Making matters worse is the wind, which restricted some of the aerial support firefighters typically employ. As gusts slowed on Thursday, retardant and water drops were able to resume, helping firefighters in their efforts. (The Eaton Fire, while still technically 0% contained because there are no established fire lines, has “significantly stopped” growing, The New York Times reports). Still, firefighters don’t typically “paint” neighborhoods; the drops, which don’t put out fires entirely so much as suppress them enough that firefighters can fight them at close range, are a liability. Kearns, however, told me that “the winds were so high, they weren’t able to do the water drops that they normally do and that are an enormous part of all fire operations,” and that “certainly compounded the problems of the fire hydrants running dry.”
Firefighters’ priority isn’t saving structures, though. “Firefighters save lives first before they have to deal with fire,” Alexander Maranghides, a fire protection engineer at the National Institute of Standards and Technology and the author of an ongoing case study of the 2018 Camp fire in Paradise, California, told me. That can be an enormous and time-consuming task in a dense area like suburban Los Angeles, and counterintuitively lead to more areas burning down. Speaking specifically from his conclusions about the Camp fire, which was similarly a wildland-urban interface, or WUI fire, Maranghides added, “It is very, very challenging because as things deteriorate — you’re talking about downed power lines, smoke obstructing visibility, and you end up with burn-overs,” when a fire moves so quickly that it overtakes people or fire crews. “And now you have to go and rescue those civilians who are caught in those burn-overs.” Sometimes, that requires firefighters to do triage — and let blocks burn to save lives.
Perhaps most ominously, the problems don’t end once the fire is out. When a house burns down, it is often the case that its water pipes burst. (This also adds to the water shortage woes during the event.) But when firefighters are simultaneously pumping water out of other parts of the system, air can be sucked down into those open water pipes. And not just any air. “We’re not talking about forest smoke, which is bad; we’re talking about WUI smoke, which is bad plus,” Maranghides said, again referring to his research in Paradise. “It’s not just wood burning; it’s wood, plastics, heavy metals, computers, cars, batteries, everything. You don’t want to be breathing it, and you don’t want it going into your water system.”
Water infrastructure can be damaged in other ways, as well. Because fires are burning “so much hotter now,” Kearns told me, contamination can occur due to melting PVC piping, which releases benzene, a carcinogen. Watersheds and reservoirs are also in danger of extended contamination, particularly once rains finally do come and wash soot, silt, debris, and potentially toxic flame retardant into nearby streams.
But that’s a problem for the future. In the meantime, Los Angeles — and lots of it — continues to burn.
“I don’t care how many resources you have; when the fires are burning like they do when we have Santa Anas, there’s so little you can do,” Scopa said. “All you can do is try to protect the people and get the people out, and try to keep your firefighters safe.”
Plus 3 more outstanding questions about this ongoing emergency.
As Los Angeles continued to battle multiple big blazes ripping through some of the most beloved (and expensive) areas of the city on Thursday, a question lingered in the background: What caused the fires in the first place?
Though fires are less common in California during this time of the year, they aren’t unheard of. In early December 2017, power lines sparked the Thomas Fire near Ventura, California, which burned through to mid-January. At the time it was the largest fire in the state since at least the 1930s. Now it’s the ninth-largest. Although that fire was in a more rural area, it ignited for many of the same reasons we’re seeing fires this week.
Read on for everything we know so far about how the fires started.
Five major fires started during the Santa Ana wind event this week:
Officials have not made any statements about the cause of any of the fires yet.
On Thursday morning, Edward Nordskog, a retired fire investigator from the Los Angeles Sheriff’s Department, told me it was unlikely they had even begun looking into the root of the biggest and most destructive of the fires in the Pacific Palisades. “They don't start an investigation until it's safe to go into the area where the fire started, and it just hasn't been safe until probably today,” he said.
It can take years to determine the cause of a fire. Investigators did not pinpoint the cause of the Thomas Fire until March 2019, more than two years after it started.
But Nordskog doesn’t think it will take very long this time. It’s easier to narrow down the possibilities for an urban fire because there are typically both witnesses and surveillance footage, he told me. He said the most common causes of wildfires in Los Angeles are power lines and those started by unhoused people. They can also be caused by sparks from vehicles or equipment.
At about 27,000 acres burned, these fires are unlikely to make the charts for the largest in California history. But because they are burning in urban, densely populated, and expensive areas, they could be some of the most devastating. With an estimated 2,000 structures damaged so far, the Eaton and Palisades fires are likely to make the list for most destructive wildfire events in the state.
And they will certainly be at the top for costliest. The Palisades Fire has already been declared a likely contender for the most expensive wildfire in U.S. history. It has destroyed more than 1,000 structures in some of the most expensive zip codes in the country. Between that and the Eaton Fire, Accuweather estimates the damages could reach $57 billion.
While we don’t know the root causes of the ignitions, several factors came together to create perfect fire conditions in Southern California this week.
First, there’s the Santa Ana winds, an annual phenomenon in Southern California, when very dry, high-pressure air gets trapped in the Great Basin and begins escaping westward through mountain passes to lower-pressure areas along the coast. Most of the time, the wind in Los Angeles blows eastward from the ocean, but during a Santa Ana event, it changes direction, picking up speed as it rushes toward the sea.
Jon Keeley, a research scientist with the US Geological Survey and an adjunct professor at the University of California, Los Angeles told me that Santa Ana winds typically blow at maybe 30 to 40 miles per hour, while the winds this week hit upwards of 60 to 70 miles per hour. “More severe than is normal, but not unique,” he said. “We had similar severe winds in 2017 with the Thomas Fire.”
Second, Southern California is currently in the midst of extreme drought. Winter is typically a rainier season, but Los Angeles has seen less than half an inch of rain since July. That means that all the shrubland vegetation in the area is bone-dry. Again, Keeley said, this was not usual, but not unique. Some years are drier than others.
These fires were also not a question of fuel management, Keeley told me. “The fuels are not really the issue in these big fires. It's the extreme winds,” he said. “You can do prescription burning in chaparral and have essentially no impact on Santa Ana wind-driven fires.” As far as he can tell, based on information from CalFire, the Eaton Fire started on an urban street.
While it’s likely that climate change played a role in amplifying the drought, it’s hard to say how big a factor it was. Patrick Brown, a climate scientist at the Breakthrough Institute and adjunct professor at Johns Hopkins University, published a long post on X outlining the factors contributing to the fires, including a chart of historic rainfall during the winter in Los Angeles that shows oscillations between very wet and very dry years over the past eight decades. But climate change is expected to make dry years drier in Los Angeles. “The LA area is about 3°C warmer than it would be in preindustrial conditions, which (all else being equal) works to dry fuels and makes fires more intense,” Brown wrote.