You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
A new paper from two Harvard researchers shows how these mega-users are disrupting the traditional regulatory structure.
Who pays for a data center? The first answer is the investors and developers who are planning on pouring billions of dollars into building out power-hungry facilities to serve all sorts of internet services, especially artificial intelligence. And how much will it cost them? The numbers thrown around have a kind of casual gigantism that makes levelheaded evaluation difficult. $80 billion? $100 billion? $500 billion?
But while technology companies are paying for the chips and the systems that do the work of artificial intelligence, it may be normal people and businesses — homeowners, barbershops, schools — that end up paying for at least some of the electricity and system upgrades necessary to bring these facilities online.
That’s the argument made by Harvard Law School lecturer Ari Peskoe and Eliza Martin, a fellow at the school’s Environmental and Energy Law Program, of which Peskoe is a part. Their paper, published Thursday, is titled, “Extracting Profits from the Public: How Utility Ratepayers Are Paying for Big Tech’s Power.”
The core argument is this: The cost of maintaining and expanding the electricity distribution system is shared by all ratepayers — retail, business, and industrial — through a process governed by state public utility commissions. Utilities, meanwhile, have a legal mandate to serve everyone in their territory and a captive customer base of ratepayers, but they also compete among themselves for the business of energy-hungry customers, who can pick and choose where they set up shop. These customers often require new investment in grid infrastructure, which utilities pay for by asking state regulators to approve higher electricity rates — for everyone.
From there the conflict is clear: Utilities will want to attract big customers, and may sacrifice their retail customers in order to do so. And lately, with the AI boom booming, there are more of these big customers than at any other time in recent memory.
“Utilities’ narrow focus on expanding to serve a handful of big tech companies … breaks the mold of traditional utility rates that are premised on spreading the costs of beneficial system expansion to all ratepayers,” Peskoe and Martin write.
The traditional model of utility regulation is built on the premise that all ratepayers should pay for grid improvements, such as new transmission lines or substations, because all will benefit from them. This dynamic is disrupted, however, when it comes to customers demanding a gigawatt or more of power, the authors write. “The very same rate structures that have socialized the costs of reliable power delivery are now forcing the public to pay for infrastructure designed to supply a handful of exceedingly wealthy corporations,” the paper says.
“The assumption behind all this is that these are broadly beneficial projects that are going to benefit energy users generally,” Peskoe told me. “But I think that assumption is a bit out of date,” pointing to an example in Virginia of a $23 million grid infrastructure project retail customers paid for half of despite it being solely necessitated by the data center.
Peskoe and Martin set out an “alternative approach,” whereby data centers will power themselves — that is, outside of the utility system — and become a “formidable counterweight to utilities’ monopoly power.” In addition to being a more fair structure for the average customer, the authors also hope it will mark a “return to the pro-market advocacy that characterized the Big Tech’s power-sector lobbying efforts prior to the ChatGPT-inspired AI boom.”
While this approach would be a major challenge to almost a century of utility regulation, Peskoe and Martin also set out some more modest options, such as having state regulators “condition service to new data centers on a commitment to flexible operations.” That proposalcites research from Duke University — and featured previously in Heatmap — showing that a commitment by data centers to power down for a small portion of every year could allow utilities to avoid having to build billions of dollars worth of new infrastructure to serve the peak demand of the system.
The barrier to this approach is that utilities “have historically been hostile to regulatory attempts to require measures that would defer or avoid the need for costly infrastructure upgrades that drive utilities’ profits,” Peskoe and Martin argue. While the enormous investment in data centers is novel, Peskoe told me that the core issue of utilities using their captive ratepayers as a checkbook in order to pursue big fish customers is right at the heart of the utility playbook.
“A lot of this is baked into the utility business model,” Peskoe said. “The incentives to deploy capital and the ability to shift costs among consumer groups are unique to utilities.”
But just as utilities have a unique business model whereby investor-owned businesses are granted monopolies, they also have a unique regulatory structure. (Apple doesn’t have to go to a board appointed by a governor to get approval to hike the price of the iPhone.) This setup gives regulators unique powers — and unique responsibilities — to patrol and restrict utilities taking advantage of ratepayers, Peskoe said.
“Regulators can try to police this stuff. It's hard. But that's one of the goals of utility regulation, is to try to police these poorly designed incentives,” Peskoe said.
“None of the consequences are baked in, but some of the basic mechanisms and incentives are just inherent and not unique to data centers.” What is unique to data centers in this moment, Peskoe added, “is just the scale of this growth, and therefore the potential scale of these cost shifts.”
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Energy Transfer’s legal win, battery storage, and the Cybertruck
Current conditions: Red flag warnings are in place for much of Florida • Spain is bracing for extreme rainfall from Storm Martinho, the fourth named storm in less than two weeks • Today marks the vernal equinox, or the first day of spring.
A jury has ordered Greenpeace to pay more than $660 million in damages to one of the country’s largest fossil fuel infrastructure companies after finding the environmental group liable for defamation, conspiracy, and physical damages at the Dakota Access Pipeline. Greenpeace participated in large protests, some violent and disruptive, at the pipeline in 2016, though it has maintained that its involvement was insignificant and came at the request of the local Standing Rock Sioux Tribe. The project eventually went ahead and is operational today, but Texas-based Energy Transfer sued the environmental organization, accusing it of inciting the uprising and encouraging violence. “We should all be concerned about the future of the First Amendment, and lawsuits like this aimed at destroying our rights to peaceful protest and free speech,” said Deepa Padmanabha, senior legal counsel for Greenpeace USA. The group said it plans to appeal.
The Department of Energy yesterday approved a permit for the Calcasieu Pass 2 liquified natural gas terminal in Louisiana, allowing the facility to export to countries without a free trade agreement. The project hasn’t yet been constructed and is still waiting for final approvals from the independent Federal Energy Regulatory Commission, but the DOE’s green light means it faces one less hurdle.
CP2 was awaiting DOE’s go-ahead when the Biden administration announced its now notorious pause on approvals for new LNG export facilities. The project’s opponents argue it’s a “carbon bomb.” Analysis from the National Resources Defense Council suggested the greenhouse gases from the project would be equivalent to putting more than 1.85 million additional gas-fueled automobiles on the road, while the Sierra Club found it would amount to about 190 million tons of carbon dioxide equivalent annually.
President Trump met with 15 to 20 major oil and gas executives from the American Petroleum Institute at the White House yesterday. This was the president’s first meeting with fossil fuel bosses since his second term began in January. Interior Secretary Doug Burgum and Energy Secretary Chris Wright were also in the room. Everyone is staying pretty quiet about what exactly was said, but according to Burgum and Wright, the conversation focused heavily on permitting reform and bolstering the grid. Reuters reported that “executives had been expected to express concerns over Trump’s tariffs and stress the industry view that higher oil prices are needed to help meet Trump’s promise to grow domestic production.” Burgum, however, stressed that oil prices didn’t come up in the chat. “Price is set by supply and demand,” he said. “There was nothing we could say in that room that could change that one iota, and so it wasn’t really a topic of discussion.” The price of U.S. crude has dropped 13% since Trump returned to office, according to CNBC, on a combination of recession fears triggered by Trump’s tariffs and rising oil output from OPEC countries.
The U.S. installed 1,250 megawatts of residential battery storage last year, the highest amount ever and nearly 60% more than in 2023, according to a new report from the American Clean Power Association and Wood Mackenzie. Overall, battery storage installations across all sectors hit a new record in 2024 at 12.3 gigawatts of new capacity. Storage is expected to continue to grow next year, but uncertainties around tariffs and tax incentives could slow things down.
China is delaying approval for construction of BYD’s Mexico plant because authorities worry the electric carmaker’s technology could leak into the United States, according to the Financial Times. “The commerce ministry’s biggest concern is Mexico’s proximity to the U.S.,” sources told the FT. As Heatmap’s Robinson Meyer writes, BYD continues to set the global standard for EV innovation, and “American and European carmakers are still struggling to catch up.” This week the company unveiled its new “Super e-Platform,” a new standard electronic base for its vehicles that it says will allow incredibly fast charging — enabling its vehicles to add as much as 249 miles of range in just five minutes.
Tesla has recalled 46,096 Cybertrucks over an exterior trim panel that can fall off and become a road hazard. This is the eighth recall for the truck since it went on sale at the end of 2023.
This fusion startup is ahead of schedule.
Thea Energy, one of the newer entrants into the red-hot fusion energy space, raised $20 million last year as investors took a bet on the physics behind the company’s novel approach to creating magnetic fields. Today, in a paper being submitted for peer review, Thea announced that its theoretical science actually works in the real world. The company’s CEO, Brian Berzin, told me that Thea achieved this milestone “quicker and for less capital than we thought,” something that’s rare in an industry long-mocked for perpetually being 30 years away.
Thea is building a stellarator fusion reactor, which typically looks like a twisted version of the more common donut-shaped tokamak. But as Berzin explained to me, Thea’s stellarator is designed to be simpler to manufacture than the industry standard. “We don’t like high tech stuff,” Berzin told me — a statement that sounds equally anathema to industry norms as the idea of a fusion project running ahead of schedule. “We like stuff that can be stamped and forged and have simple manufacturing processes.”
The company thinks it can achieve simplicity via its artificial intelligence software, which controls the reactor’s magnetic field keeping the unruly plasma at the heart of the fusion reaction confined and stabilized. Unlike typical stellarators, which rely on the ultra-precise manufacturing and installment of dozens of huge, twisted magnets, Thea’s design uses exactly 450 smaller, simpler planar magnets, arranged in the more familiar donut-shaped configuration. These magnets are still able to generate a helical magnetic field — thought to keep the plasma better stabilized than a tokamak — because each magnet is individually controlled via the company’s software, just like “the array of pixels in your computer screen,” Berzin told me.
“We’re able to utilize the control system that we built and very specifically modulate and control each magnet slightly differently,” Berzin explained, allowing Thea to “make those really complicated, really precise magnetic fields that you need for a stellarator, but with simple hardware.”
This should make manufacturing a whole lot easier and cheaper, Berzin told me. If one of Thea’s magnets is mounted somewhat imperfectly, or wear and tear of the power plant slightly shifts its location or degrades its performance over time, Thea’s AI system can automatically compensate. “It then can just tune that magnet slightly differently — it turns that magnet down, it turns the one next to it up, and the magnetic field stays perfect,” Berzin explained. As he told me, a system that relies on hardware precision is generally much more expensive than a system that depends on well-designed software. The idea is that Thea’s magnets can thus be mass manufactured in a way that’s conducive to “a business versus a science project.”
In 2023, Thea published a technical report proving out the physics behind its so-called “planar coil stellarator,” which allowed the company to raise its $20 million Series A last year, led by the climate tech firm Prelude Ventures. To validate the hardware behind its initial concept, Thea built a 3x3 array of magnets, representative of one section of its overall “donut” shaped reactor. This array was then integrated with Thea’s software and brought online towards the end of last year.
The results that Thea announced today were obtained during testing last month, and prove that the company can create and precisely control the complex magnetic field shapes necessary for fusion power. These results will allow the company to raise a Series B in the “next couple of years,” Berzin said. During this time, Thea will be working to scale up manufacturing such that it can progress from making one or two magnets per week to making multiple per day at its New Jersey-based facility.
The company’s engineers are also planning to stress test their AI software, such that it can adapt to a range of issues that could arise after decades of fusion power plant operation. “So we’re going to start breaking hardware in this device over the next month or two,” Berzin told me. “We’re purposely going to mismount a magnet by a centimeter, put it back in and not tell the control system what we did. And then we’re going to purposely short out some of the magnetic coils.” If the system can create a strong, stable magnetic field anyway, this will serve as further proof of concept for Thea’s software-oriented approach to a simplified reactor design.
The company is still years away from producing actual fusion power though. Like many others in the space, Thea hopes to bring fusion electrons to the grid sometime in the 2030s. Maybe this simple hardware, advanced software approach is what will finally do the trick.
The Chinese carmaker says it can charge EVs in 5 minutes. Can America ever catch up?
The Chinese automaker BYD might have cracked one of the toughest problems in electric cars.
On Tuesday, BYD unveiled its new “Super e-Platform,” a new standard electronic base for its vehicles that it says will allow incredibly fast charging — enabling its vehicles to add as much as 249 miles of range in just five minutes. That’s made possible because of a 1,000-volt architecture and what BYD describes as matching charging capability, which could theoretically add nearly one mile of range every second.
It’s still not entirely clear whether the technology actually works, although BYD has a good track record on that front. But it suggests that the highest-end EVs worldwide could soon add range as fast as gasoline-powered cars can now, eliminating one of the biggest obstacles to EV adoption.
The new charging platform won’t work everywhere. BYD says that it will also build 4,000 chargers across China that will be able to take advantage of these maximum speeds. If this pans out, then BYD will be able to charge its newest vehicles twice as fast as Tesla’s next generation of superchargers can.
“This is a good thing,” Jeremy Wallace, a Chinese studies professor at Johns Hopkins University, told me. “Yes, it’s a Chinese company. And there are geopolitical implications to that. But the better the technology gets, the easier it is to decarbonize.”
“As someone who has waited in line for chargers in Pennsylvania and New Jersey, I look forward to the day when charging doesn’t take that long,” he added.
The announcement also suggests that the Chinese EV sector remains as dynamic as ever and continues to set the global standard for EV innovation — and that American and European carmakers are still struggling to catch up. The Trump administration is doing little to help the industry catch up: It has proposed repealing the Inflation Reduction Act’s tax credits for EV buyers, which provide demand-side support for the fledgling industry, and the Environmental Protection Agency is working to roll back tailpipe-pollution rules that have furnished early profits to EV makers, including Tesla. Against that background, what — if anything — can U.S. companies do to catch up?
The situation isn’t totally hopeless, but it’s not great.
BYD’s mega-charging capability is made possible by two underlying innovations. First, BYD’s new platform — the wiring, battery, and motors that make up the electronic guts of the car — will be capable of channeling up to 1,000 volts. That is only a small step-change above the best platforms available elsewhere— the forthcoming Gravity SUV from the American carmaker Lucid is built on a 926-volt platform, while the Cybertruck’s platform is 800 volts — but BYD will be able to leverage its technological firepower with mass manufacturing capacity unrivaled by any other brand.
Second, BYD’s forthcoming chargers will be capable of using the platform’s full voltage. These chargers may need to be built close to power grid infrastructure because of the amount of electricity that they will demand.
But sitting underneath these innovations is a sprawling technological ecosystem that keeps all Chinese electronics companies ahead — and that guarantees Chinese advantages well into the future.
“China’s decisive advantage over the U.S. when it comes to innovation is that it has an entrenched workforce that is able to continuously iterate on technological advances,” Dan Wang, a researcher of China’s technology industry and a fellow at the Paul Tsai China Center at Yale Law School, told me.
The country is able to innovate so relentlessly because of its abundance of process knowledge, Wang said. This community of engineering practice may have been seeded by Apple’s iPhone-manufacturing effort in the aughts and Tesla’s carmaking prowess in the 2010s, but it has now taken on a life of its own.
“Shenzhen is the center of the world’s hardware manufacturing industry because it has workers rubbing shoulders with academics rubbing shoulders with investors rubbing shoulders with engineers,” Wang told me. “And you have a more hustle-type culture because it’s so much harder to maintain technological moats and technological differentiation, because people are so competitive in these sorts of spaces.”
In a way, Shenzhen is the modern-day version of the hardware and software ecosystem that used to exist in northern California — Silicon Valley. But while the California technology industry now largely focuses on software, China has taken over the hardware side.
That allows the country to debut new technological innovations much faster than any other country can, he added. “The comparison I hear is that if you have a new charging platform or a new battery chemistry, Volkswagen and BMW will say, We’ll hustle to put this into our systems, and we’ll put it in five years from now. Tesla might say, we’ll hustle and get it in a year from now.”
“China can say, we’ll put it in three months from now,” he said.“You have a much more focused concentration of talent in China, which collapses coordination time.”
That culture has allowed the same companies and engineers to rapidly advance in manufacturing skill and complexity. It has helped CATL, which originally made batteries for smartphones, to become one of the world’s top EV battery makers. And it has helped BYD — which is close to unseating Tesla as the world’s No. 1 seller of electric vehicles — move from making lackluster gasoline cars to some of the world’s best and cheapest EVs.
It will be a while until America can duplicate that manufacturing capability, partly because of the number of headwinds it faces, Wang said.