Politics
The Senate’s Harsh Compromise on Clean Energy Tax Credits, Explained
Excise tax is out, foreign sourcing rules are in.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Excise tax is out, foreign sourcing rules are in.
And it only gets worse from here.
Reading between the lines of Governor Kathy Hochul’s big nuclear announcement.
The energy secretary’s philosophy is all over the Senate mega-bill.
How the perpetually almost-there technology could get shut out of the Inflation Reduction Act’s surviving nuclear tax credits.
The company is well-positioned to take advantage of Trump’s nuclear policies, include his goal of installing a microreactor on a military base within the next few years.
At one point during his 12-year stint at SpaceX, Doug Bernauer turned his attention to powering a Martian colony with nuclear microreactors. Naturally, these would also fuel the rocket ships that could shuttle Mars-dwellers to and from Earth as needed. Then he had an epiphany. “I quickly realized that yes, nuclear power could help humanity become multiplanetary in the long term, but it could also transform life on Earth right now,” Bernauer wrote in 2023.
As nuclear power reemerges as a prominent player in the U.S. energy conversation, its potential to help drive a decarbonized future has crystallized into a rare bipartisan point of consensus. Radiant Nuclear, the Earth-based microreactor company that Bernauer founded after leaving SpaceX in 2019, is well positioned to take advantage of that, as its value proposition might as well be tailor-made for the Trump administration’s priorities
The startup’s aim is to make highly portable 1-megawatt reactors that can replace off-grid power sources such as diesel generators, which are ubiquitous in remote areas such as military bases. It’s fresh off a $165 million Series C funding round, with plans to begin commercial deployment in 2028. That aligns neatly with Trump’s recently announced goal of deploying a reactor on a military base by the same year. It’s an opportunity that Radiant Chief Operating Officer Tori Shivanandan told me the company is uniquely well-suited to take advantage of.
“A diesel generator that operates at 1 megawatt you have to refill with diesel about every three to five days,” Shivanandan explained. That means having regular access to both fuel and the generator itself, “and that’s just not reliable in many locations.” The company says its reactors only need refueling only every five years.
Radiant’s goal is to be cost competitive with generators in far flung locales — not just military bases, but also distant mines, rural towns, oil and gas drilling operations, and smaller, more dispersed data centers. “A customer who’s on the North Slope of Alaska, they might pay $11 or $12 a gallon for diesel,” Shivanandan told me. That’s a price she said Radiant could definitely compete with.
“The military’s interest in microreactors has been coming for quite a long time,” Rachel Slaybaugh, a climate tech investor at the venture firm DCVC told me. The firm led Radiant’s Series C round. Some of Radiant’s appeal is “right place, right time,” she said. “Some of it is putting in a lot of work over a long time to make it the right place, right time.”
Trump’s recent nuclear-related executive orders also have Shivanandan and her team over the moon. As the administration looks to streamline nuclear licensing and buildouts, one order explicitly calls for establishing a process for the “high-volume licensing of microreactors and modular reactors,” which includes “standardized applications and approvals.” These orders, Shivanandan told me, will keep Radiant on track to start selling by 2028, and set the stage for the company’s rapid scale up.
Alongside DCVC, the company's latest round included funding from Andreessen Horowitz’s “American Dynamism” team, Union Square Ventures, and Founders Fund. This raise, Shivanandan told me, will cover Radiant’s expenses as it builds out its prototype reactor, which it plans to test at Idaho National Lab next year. It will be the first fueled operation of a brand new reactor design in 50 years, she said.
“My perspective is the bigger reactors are important and interesting, and there are a lot of great companies, but they’re not a very good fit for venture investing, Slaybaugh told me. “We like microreactors, because they just need so much less capital and so much less time.”
That potential buildout speed also means that even as the Inflation Reduction Act’s clean energy tax credits look poised for a major haircut, Radiant may still be able to benefit from them. In the latest version of the budget bill, nuclear projects are only eligible for credits if they begin construction by 2029 — a tall order for the many startups that likely won’t start building in earnest until the 2030s. But if all goes according to plan, that’s a timeline Radiant could work with — at least for its initial reactors, which would be the most expensive and thus most in need of credits anyway.
The company aims to reach economies of scale relatively quickly, with a goal of building 50 reactors per year at a yet-to-be-constructed factory by the mid 2030s. The modular design means Radiant can deploy multiple 1-megawatt reactors to facilities with greater power needs. But if a customer wants more than 10 or so megawatts, Radiant recommends they look to microreactors’ larger cousins, the so-called small modular reactors. Companies developing these include Last Energy, which makes 20-megawatt reactors, as well as NuScale, Kairos, and X-energy, which aim to build plants ranging from 150 megawatts to 960 megawatts in size.
While it could take one of these SMR companies years to fully install its reactors, Radiant’s shipping container-sized products are not designed to be permanent pieces of infrastructure. After being trucked onsite, the company says its reactors can be switched on the following day. Then, after about 20 years of continuous operation, they’ll be carried away and the site easily returned to greenfield, since there was no foundation dug or concrete poured to begin with.
This April, the Department of Defense selected Radiant as one of eight eligible companies for the Advanced Nuclear Power for Installations Program. The winner(s) will design and build microreactors on select military installations to “provide mission readiness through energy resilience” and produce “enough electrical power to meet 100 percent of all critical loads,” according to the Defense Innovation Unit’s website.
Also on this list was the nuclear company Oklo, which counts OpenAI CEO Sam Altman among its primary backers and went public last year. This Wednesday, the Air Force announced its intent to enter into a power purchase agreement with the company to build a pilot reactor on a base in Alaska. The reactor will reportedly produce up to 5 megawatts of power, though Oklo’s full-scale reactors are set to be 75 megawatts. Whether the military will opt to contract with other nuclear companies is still an open question.
Perhaps more meaningful, though, is the show of support Radiant recently gained from the Department of Energy, which selected it as one of five companies to receive a conditional commitment for a type of highly enriched uranium known as HALEU that’s critical for small, next-generation reactors. Much of this fuel came from Russia before Biden banned Russian uranium imports last year, in a belated response to the country’s invasion of Ukraine and an attempt to shore up the domestic nuclear supply chain.
America’s supply of HALEU is still scarce, though, and as such, Shivanandan considers the DOE’s fuel commitment to be the biggest vote of confidence Radiant has received from the government so far. The other companies selected to receive fuel are TRISO-X (a subsidiary of X-energy), Kairos Power, TerraPower, and Westinghouse, all of which have been around longer — the majority a decade or more longer — than Radiant.
Though the company is currently focused on Earth, Radiant hasn’t completely abandoned its interplanetary dreams. “We do believe that, should you want to colonize Mars and also create the environment in which you could refuel your rocket and send it back, then you would need 1-megawatt nuclear reactors,” Shivanandan told me. Anything larger might be too heavy to put in a rocket.
Good to know.
A new report from the Clean Air Task Force casts shade on “levelized cost of energy.”
Forgive me, for I have cited the levelized cost of energy.
That’s what I was thinking as I spoke with Kasparas Spokas, one of the co-authors of a new paper from the Clean Air Task Force that examines this popular and widely cited cost metric — and found it wanting.
Levelized cost of energy, or LCOE, is a simple calculation: You take a generator, like a solar panel (with a discount for future costs), and add up its operating and capital expenditures, and then divide by the expected energy output over the life of the project (also discounted).
LCOE has helped underline the economic and popular case for renewables, especially solar. And it’s cited everywhere. The investment bank Lazard produces an influential annual report comparing the LCOE of different generation sources; the latest iteration puts utility-scale solar as low as $29 per megawatt-hour, while nuclear can be as high as $222. Environmental groups cite LCOE in submissions to utilities regulators. Wall Street analysts use it to project costs. And journalists, including me, will cite it to compare the cost of, say, solar panels to natural gas.
We probably shouldn’t, according to Spokas — or at least we should be more clear about what LCOE actually means.
“We continue to see levelized cost of electricity being used in ways that we think are not ideal or not adequate to what its capabilities are,” Spokas told me.
The report argues that LCOE “is not an appropriate tool to use in the context of long-term planning and policymaking for deep decarbonization” because it doesn’t take into account factors that real-world grids and grid planners also have to consider, such as when the generator is available, whether the generator has inertia, and what supporting infrastructure (including transmission and distribution lines) a generator needs to supply power to customers.
We see these limitations and constraints on real-life grids all the time, for instance in the infamous solar “duck curve.” During the middle of the day, when the sun is highest, non-solar generation can become essentially unnecessary on a solar-heavy grid. But these grids can run into problems as the sun goes down but electricity demand persists. In this type of grid, additional solar may be low cost, but also low value — it gives you electricity when you need it the least.
“If you’re building a lot of solar in the Southwest, at some point you’ll get to the point where you have enough solar during the day that if you build an incremental amount of solar, it’s not going to be valuable,” Spokas said. To make additional panels useful, you’d have to add battery storage, increasing the electricity’s real-world cost.
Looking for new spots for renewables also amps up conflict over land use and provides more opportunities for political opposition, a cost that LCOE can’t capture. And a renewables-heavy grid can require investments in energy transmission capacity that other kinds of generation do not — you can put a gas-fired power plant wherever you can buy land and get permission, whereas utility-scale solar or wind has to be where it’s sunny or windy.
“The trend is, the more renewable penetration you have, the more costly meeting a firm demand with renewables and storage becomes,” Spokas said.
Those real-world pressures are now far more salient to grid planners than they were earlier this century, when LCOE became a popular metric to compare different types of generators.
“The rise of LCOE’s popularity to evaluate technology competitiveness also coincided with a period of stagnant load growth in the United States and Europe,” the report says. When there was sufficient generation capacity that could be ramped up and down as needed, “the need to consider various system needs and costs, such as additional transmission or firm capacity needs was relatively low.”
This is not the world we’re in today.
Demand for electricity is rising again, and the question for grid planners and policymakers now is less how to replace fossil generators going offline, and more how to meet new electricity demand in a way that can also meet society’s varied goals for cost and sustainability.
This doesn’t always have to mean maxing out new generation — it can also mean making large sources of electricity load more flexible — but it does mean making more difficult, more considered choices that take in the grid as a whole into account.
When I asked Spokas whether grid operators and grid planners needed to read this report, he chuckled and said no, they already know what’s in it. Electricity markets, as imperfect as they often are, recognize that not every megawatt is the same.
Electricity suppliers often get paid more for providing power when it’s most needed. In regions with what’s known as capacity markets, generators get paid in advance to guarantee they’ll be available when the grid needs them, a structure that ensures big payouts to coal, gas, and nuclear generators. In markets that don’t have that kind of advance planning, like Texas’ ERCOT, dispatchable generators (often batteries) can get paid for providing so-called “ancillary services,” meeting short term power needs to keep the grid in balance — a service that batteries are often ideally placed to provide.
When grid planners look at the entirety of a system, they often — to the chagrin of many renewables advocates — tend to be less enthusiastic about renewables for decarbonizing the energy system than many environmental groups, advocates, and lawmakers.
The CATF report points to Ontario, Canada where the independent system operator concluded that building a new 300-megawatt small modular nuclear reactor — practically the definition of high LCOE generation, not least because such a thing has never been deployed before in North America — would actually be less risky for electricity costs than building more battery-supported wind and solar, according to the Globe and Mail. Ontario regulators recently granted a construction license to the SMR project, which is part of a larger scheme to install four small reactors, for a total 1.2 gigawatts of capacity. To provide the equivalent supply of renewable energy would require adding between 5.6 and 8.9 gigawatts of wind and solar capacity, plus new transmission infrastructure, the system operator said, which could drive up prices higher than those for advanced nuclear.
None of this is to say that we should abandon LCOE entirely. The best use case, the report argues, is for comparing costs for the same technology over time, not comparing different technologies in the present or future. And here the familiar case for solar — that its cost has fallen dramatically over time — is borne out.
Broadly speaking, CATF calls for “decarbonization policy, industry strategy, and public debate” to take a more “holistic approach” to estimating cost for new sources of electricity generation. Policymakers “should rely on jurisdiction-specific system-level analysis where possible. Such analysis would consider all the system costs required to ensure a reliable and resilient power system and would capture infrastructure cost tradeoffs over long and uncertain-time horizons,” the report says.
As Spokas told me, none of this is new. So why the focus now?
CATF is catching a wave. Many policymakers, grid planners, and electricity buyers have already learned to appreciate all kinds of megawatts, not just the marginally cheapest one. Large technology companies are signing expensive power purchase agreements to keep nuclear power plants open or even revive them, diving into the development of new nuclear power and buying next-generation geothermal in the hope of spurring further commercialization.
Google and Microsoft have embraced a form of emissions accounting that practically begs for clean firm resources, as they try to match every hour of electricity they use with a non-emitting resource.
And it’s possible that clean firm resources could get better treatment than theycurrently get in the reconciliation bill working its way through Congress. Secretary of Energy Chris Wright recently called for tax credits for “baseload” power sources like geothermal and nuclear to persist through 2031, according to Foundation for American Innovation infrastructure director Thomas Hochman.
“It’s not our intention to try to somehow remove incentives for renewables specifically, but to the extent that we can preserve what we can, we’re happy if it would be used in that way,” Spokas said.
When I asked Spokas who most needed to read this report, he replied frankly, “I think climate advocates would be in that bucket. I think policymakers that have a less technical background would also be in that bucket, and media that have a less technical background would also be in there.”
I’ll keep that in mind.