Sign In or Create an Account.

By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy

Technology

The World’s First Commercial Fusion Plant Will Be in Virginia

Commonwealth Fusion Systems will build it in collaboration with Dominion Energy Virginia.

Commonwealth Fusion Systems.
Heatmap Illustration/Getty Images, Commonwealth Fusion Systems

Commonwealth Fusion Systems, the buzziest and most well-funded company in the increasingly buzzy and well-funded fusion sector, announced today that it will build a commercial fusion power plant in Chesterfield County, Virginia — a first for both the company and the world. CFS will independently finance, build, own, and operate the 400-megawatt plant, which will produce enough energy to power about 150,000 homes sometime “in the early 2030s.”

All this will happen in collaboration with Dominion Energy Virginia, which serves electricity to more than 2.7 million homes and businesses. While Dominion isn’t contributing monetarily, it is providing CFS with the leasing rights for the proposed site, which it owns, as well as development and technical expertise. The plant itself will cost billions to develop and build.

“While a utility partnership is not a requirement for this type of project, we ultimately see utilities playing a critical role as key customers and future owners of fusion power plants,” a CFS spokesperson told me via email. “Collaborating and sharing expertise allows CFS to accelerate its development efforts while equipping Dominion with valuable insights to inform future commercial decisions and strategies.”

The company told me that after a global search, the decision to site the plant in Virginia came down to factors such as access to infrastructure, site readiness, the local workforce, potential partnerships, state support for the clean energy transition, and customer interest. Virginia is also the world’s biggest market for data centers, a booming industry in dire need of clean, firm energy to power it given the growing energy demands of artificial intelligence. The spokesperson wrote, however, that data center power demand was “only a part of the decision criteria for CFS.”

Commonwealth Fusion Systems has raised over $2 billion in funding to date, including a historically huge $1.8 billion Series B in 2021, which cemented the company as the industry leader in the race to commercialize fusion. The spokesperson told me that construction of the grid-connected commercial plant, known as ARC (an acronym for “affordable, robust, compact”), isn’t expected to begin until the “late 2020s,” once the necessary permits are in place. Prior to building and operating ARC, CFS will demonstrate the technology’s potential via a smaller, noncommercial pilot plant known as SPARC (“smallest possible ARC”), which is scheduled to be turned on in 2026 and to produce more energy than it consumes, a.k.a. demonstrate net energy gain, in 2027. (SPARC will be built at the company’s headquarters outside Boston, Massachusetts.)

Of course, producing electricity from a first-of-its-kind fusion plant will not come cheap, though the company assured me that Virginia customers will not see this higher price reflected in their utility bills. That’s because while CFS plans to sell the electricity ARC generates into the wholesale energy market, the company is also in discussions with large corporate buyers interested in procuring the environmental benefits of this clean energy via long-term, virtual power purchase agreements. That means that while these potential customers wouldn’t receive the literal fusion electrons themselves, they would earn renewable energy credits by essentially covering the cost of the more expensive fusion power. “The intention is that these customers will pay for the power such that other Virginia customers will not be impacted,” the spokesperson told me.

CFS claims that when the time comes, connecting a fusion power plant to the grid should be relatively straightforward. “From the perspective of grid operators, it will operate similarly to natural gas power plants already integrated into the grid today,” the spokesperson wrote. That sets fusion apart from other clean energy sources such as solar and wind, which often languish in seemingly endless interconnection queues as they await the buildout of expensive and contentious transmission infrastructure.

Naturally, CFS is not the only player in the increasingly crowded fusion space aiming to commercialize as soon as possible. If fusion is to play a significant role in the future energy mix, as many experts think it will, there will almost certainly be multiple companies with a variety of technical approaches getting grid-connected. But there’s got to be a first. As Ally Yost, senior vice president of corporate development at CFS, put it to me when I interviewed her this summer, “One of the things that’s most exciting about working here and working in this space is that we are simultaneously building an industry while building a company.”

Yellow

You’re out of free articles.

Subscribe today to experience Heatmap’s expert analysis 
of climate change, clean energy, and sustainability.
To continue reading
Create a free account or sign in to unlock more free articles.
or
Please enter an email address
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Donald Trump.
Heatmap Illustration/Getty Images

President Trump has had it in for electric vehicle charging since day one. His January 20 executive order “Unleashing American Energy” singled out the $5 billion National Electric Vehicle Infrastructure program by name, directing the Department of Transportation to pause and review the funding as part of his mission to “eliminate” the so-called “electric vehicle mandate.”

With the review now complete, the agency has concluded that canceling NEVI is not an option. In an ironic twist, the Federal Highway Administration issued new guidance for the program on Monday that not only preserves it, but also purports to “streamline applications,” “slash red tape,” and “ensure charging stations are actually built.”

Keep reading...Show less
Blue
Electric Vehicles

AM Briefing: The Energy Department’s Advanced Nuclear Dream

On Sierra Club drama, OBBB’s price hike, and deep-sea mining blowback

Energy Department Backs 11 Advanced Nuclear Projects
Heatmap Illustration/Getty Images

Current conditions: Tropical Erin is expected to gain strength and make landfall in the Caribbean as the first major hurricane of the season, lashing islands with winds of up to 80 miles per hour and 7 inches of rain • More than 152 fires have broken out across Greece in the past 24 hours alone as Europe battles a heatwave • Typhoon Podul is expected to make landfall over southeastern Taiwan on Wednesday morning, lashing the island with winds of up to 96 miles per hour.

THE TOP FIVE

1. Energy Department selects 11 nuclear projects for pilot program

The Department of Energy selected 11 nuclear projects from 10 reactor startups on Tuesday for a pilot program “with the goal to construct, operate, and achieve criticality of at least three test reactors” by next July 4. The Trump administration then plans to fast-track the successful technologies for commercial licensing. The effort is part of the United States’ attempt at catching up with China, which last year connected its first high-temperature gas-cooled reactor to the grid. The technologies in the program vary among the reactors selected for the program, with some reactors based on Generation IV designs using coolants other than water and others pitching smaller but otherwise traditional light water reactors. None of the selected models will produce more than 300 megawatts of power. The U.S. hopes these smaller machines can be mass produced to bring down the cost of nuclear construction and deploy atomic energy in more applications, including on remote military bases, and even, as NASA announced last week, the moon.

Keep reading...Show less
Yellow
Podcast

Shift Key Summer School: How Do Power Markets Work?

Jesse gives Rob a lesson in marginal generation, inframarginal rent, and electricity supply curves.

Power lines.
Heatmap Illustration/Getty Images

Most electricity used in America today is sold on a wholesale power market. These markets are one of the most important institutions structuring the modern U.S. energy economy, but they’re also not very well understood, even in climate nerd circles. And after all: How would you even run a market for something that’s used at the second it’s created — and moves at the speed of light?

On this week’s episode of Shift Key Summer School, Rob and Jesse talk about how electricity finds a price and how modern power markets work. Why run a power market in the first place? Who makes the most money in power markets? How do you encourage new power plants to get built? And what do power markets mean for renewables?

Keep reading...Show less
Yellow