You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
On EV investments hitting the brakes, Google’s nuclear restart, and a new data center consensus

Current conditions: Cyclone Montha is poised to make landfall over the Andhra Pradesh coast in eastern India with winds of up to 62 miles per hour • South Africa’s Northern Cape faces extremely high fire risks • Southwest California is also facing high risk of wildfires amid Santa Ana winds and dry, warm conditions today and tomorrow.

Hurricane Melissa has strengthened into a major storm, threatening to make landfall over Haiti, Jamaica, and Cuba as a Category 5 hurricane in the next few hours, with winds up to 180 miles per hour and more than four feet of rainfall. It’s likely to be the strongest storm to hit Jamaica since records started in 1851, with storm surge lapping the coast with waves of up to 15 feet. Already the storm has killed at least six people in the northern Caribbean. Evacuations started on Monday. “This can quickly escalate into a humanitarian crisis where a large number of people are in need of basic supplies such as food, safe drinking water, housing and medical care,” AccuWeather forecasters warned on Monday. “The prolonged nature of impacts can result in entire communities being cut off from aid and support for multiple days.”
The U.S. is just weeks away from reviving a shuttered nuclear plant for the first time, as Holtec International’s Palisades plant in Michigan nears its restart. Once that’s done, the Microsoft-backed project to revive the still-operable reactor at Pennsylvania’s Three Mile Island facility is likely the next nuclear site to come back from permanent decommissioning. Add another to the list. On Monday, Google inked a deal to back the restart of NextEra’s Duane Arnold nuclear plant, Iowa’s only atomic power station. As I reported in this newsletter back in August, NextEra was already considering a restart of the station, which shut down in 2020. It is, as my colleague Katie Brigham wrote in August, the zenith of the "nuclear dealmaking boom.”
The move comes as the U.S. finally embraces large-scale reactors again after years of pegging all future hopes of new nuclear construction on as-yet-unbuilt small modular reactors. On Tuesday, the U.S. government announced an $80 billion deal with Westinghouse to build a fleet of at least eight new power plants with a mix of gigawatt-sized AP1000s and some smaller versions, the Financial Times reported.
Heatmap’s Jael Holzman has breaking news on New York’s energy future: Swiftsure, a 650-megawatt battery energy storage development planned for New York’s Staten Island, was quietly scuttled in August. Rather than make a public announcement, the developer, Fullmark Energy (formerly Hecate), instead wrote a letter to the New York State Department of Public Service withdrawing the proposal. As Jael wrote, “nobody in Staten Island seems to have known until late Friday afternoon when local publication SI Advance first reported the withdrawal.” The project faced heavy opposition, including from New York Republican mayoral candidate Curtis Sliwa. The campaigns of Democrat Zohran Mamdani and independent Andrew Cuomo did not respond to requests for comment.
In other local news, Heatmap’s Jeva Lange is out with a remarkable new series called The Aftermath, a look at surviving the infernos that are increasingly a fact of life in parts of the U.S., especially out West. The series includes stories on the challenges involved in evacuation, why relocation can be impossible, the stories of wildfires that don’t capture national attention, the limits of what the public knows and doesn’t know about wildfires, and the buffers towns such as the fire-scorched Paradise, California, are trying to establish.
Investments in electric vehicle-related infrastructure, including batteries factories, vehicle assembly plants, and charging stations, tumbled by nearly a third to $8.1 billion in the three months leading to September compared to the same period a year earlier, according to the Financial Times. The analysis, based on data from the U.S. Clean Investment Monitor, found that about $7 billion of planned EV investments were abandoned between April and September. The pullback could define the West’s place in the EV industry for years to come, widening China’s lead over production of battery-powered cars. “We need to … be quicker in development to compete with the Chinese,” Hakan Samuelsson, chief executive of Volvo Cars, told the newspaper. “As soon as you weaken these signals, everything will slow down,” he added, referring to the knock-on effect of policy changes emanating from the White House.
When Secretary of Energy Chris Wright last week directed the Federal Energy Regulatory Commission to fast-track interconnection request for large new energy users, he also endorsed the somewhat controversial idea that big electricity users such as data centers should dial back their operations from time to time when the grid is stressed, Latitude Media’s Lisa Martine Jenkins reported last week. On Monday, ChatGPT-maker OpenAI threw its weight behind the idea. In a letter to the White House’s Office of Science and Technology Policy, Christopher Lehane, OpenAI’s chief government affairs officer, called on regulators to “expand use of curtailable load resources and modernize interconnection policy.” Lehane said “we welcomed the news last week that” Wright had expressed support for the policy. “To strengthen grid reliability and expand capacity for AI and other flexible loads, FERC should allow more demand-side participation in wholesale markets and speed up interconnection for large loads that can curtail,” he added.
The idea has been gaining momentum since Duke Energy researcher Tyler Norris put out a landmark paper in February identifying up to 100 gigawatts of additional load the grid could absorb if data centers simply adopted a policy of reducing power consumption when there was a shortage of electrons. Heatmap’s Matthew Zeitlin called it “one weird trick for getting more data centers on the grid.”
Carbon removal startup Rewind has launched DMS Georgia, the first commercial-scale carbon removal operation using deep mine storage. It’s the first time a certified carbon credit will be delivered by plant-based carbon in naturally oxygen-free underground environments. The project aims to bury carbon-emitting biomass in environments where the lack of oxygen makes decomposition impossible. By 2030, Rewind aims to remove one million metric tons of carbon per year.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
A new model from Johns Hopkins’ Net Zero Industrial Policy Lab uses machine learning to predict tomorrow’s industrial powerhouses.
It’s no secret that China, Japan, and Germany are industrial powerhouses, with vast potential in clean tech manufacturing. So how’s a less industrialized nation with an eye on the economy of the future supposed to compete? Are protectionist policies such as tariffs a good way to jumpstart domestic manufacturing? Should it focus on subsidizing factory buildouts? Or does the whole game come down to GDP?
According to a new machine learning tool from Johns Hopkins’ Net Zero Industrial Policy Lab, none of the above really matters all that much. Many of the policies that dominate geopolitical conversations aren’t strongly correlated with a country’s relative industrial potential, according to the model. The same goes for country-specific characteristics such as population, percentage of industry as a share of GDP, and foreign direct investment, a.k.a. FDI. What does count? A nation’s established industrial capabilities, and the degree to which they cross over to climate tech.
The purpose of the tool, named the Clean Industrial Capabilities Explorer, is to help policymakers “X-ray your country’s existing industrial base to identify what are your genuine strengths,” Tim Sahay, co-director of the lab, told me. The model, he explained, can identify “which core capabilities in your underlying industrial know-how are weak. That is like a diagnosis of what you should get into.”
The model calculates competitiveness across 10 clean energy technologies: solar, wind, batteries, electrolyzers, heat pumps, permanent magnets, nuclear, biofuels, geothermal, and transmission. That analysis ultimately surfaced five “core capabilities” that are most predictive of a country’s relative strength in each technology area: electronics, industrial materials, machinery, chemicals, and metals. Strength in geothermal, for example, is highly correlated with a machinery-focused industrial base, since building a geothermal plant requires expertise in making drilling rigs, heat exchangers, and steam turbines.
This “X-ray” of national capabilities not only confirms the dominance of leading Asian and European manufacturing economies, it also surfaces a group of lesser-known nations that appear well-positioned to become major future producers and exporters of key clean technologies. These so-called “future stars” include a handful of Central European countries — Czechia, Slovenia, Hungary, Slovakia, and Poland — plus the Southeast Asian economies of Malaysia, the Philippines, Thailand, and Vietnam. In Africa, Ethiopia emerges as the most promising economy.

Take Hungary as an example — its core competencies are machinery, electronics, and chemicals, making the country highly competitive when it comes to producing components for batteries, biofuels, and the machinery critical for geothermal power plants. The U.S., by comparison, excels at nuclear, electrolyzers, biofuel, and geothermal.
Many of the European future stars appear to benefit from their proximity to Germany, long an industrial stronghold in the region. “Poland, for example, received a huge amount of German FDI in the late 90s, early 2000s,” Sahay told me, explaining that countries in this region built up strength in their chemicals and metals sectors under the influence of the Soviet Union. Germany then set up these countries as key suppliers for its various industries, from autos to chemicals.
Of the 10 countries identified as rising stars, all of them received Chinese investment sometime in the past 10 years, Sahay said. “What we are seeing is decisions that have been made over the last couple of decades are bearing fruit in the 2020s,” he said, explaining that all of the countries on the list “were identified as places for potential investment by the world’s leading industrial firms in the 2000s or 2010s.”
This has led Bentley Allan, a political science professor and co-director of the policy lab, to think that China is likely doing some modeling of its own to determine where to direct its investments. Whatever the country is working with, it’s arriving at essentially the same conclusions regarding which nations show strong industrial potential, and are thus attractive targets for investment. “China isn’t the only one who can benefit from that strategy, but they’re the only ones being strategic about it at the moment,” Allan told me.
Allan’s hope is that the tool will democratize the knowledge that’s helped China dominate the global clean tech economy. “No one’s produced a global tool that enables not just China to invest strategically, but enables the U.S. to invest strategically, enables the UK to invest strategically in the developing world,” he explained. That’s critical when figuring out how to build an industrial base that can weather geopolitical tensions that might necessitate, say, a shift away from Chinese imports or Russian gas.
While it might not be particularly surprising that a country’s existing industrial capabilities strongly correlate with its potential industrial capabilities, the reality is that in many cases, getting a clear view of a country’s actual core competencies is not so straightforward. That’s because, as Allan told me, economists simply haven’t made widely available tools like this before. “They’ve made other tools for managing the macroeconomic environment, because for 60 years we basically thought that that was the only lever worth pulling,” he said.
Due to that opacity around industrial strength, model was able to yield some findings that the researchers found genuinely surprising. For example, not only did the tool show that countries such as the Philippines and Malaysia have stronger manufacturing bases than Allan would have guessed, it ranked Italy higher than Germany in overall competitiveness, showing solid potential in the nuclear, transmission, heat pump, electrolyzer, and geothermal industries.
That illustrates another complication the model solves for — namely that the countries with the most potential aren’t always the ones pursuing the most robust or intentional green industrial strategies. Both Italy and Japan, for instance, are well-positioned to benefit from a more explicit, structured focus on climate tech manufacturing, Allan told me.
Industrial strength will likely not be achieved through broad economic policies such as tariffs, subsidies, or grant programs, however, according to the model. Say for example that a country wants to deepen its expertise in solar manufacturing. “The things that you might want to invest in are things like precision machinery to produce the cutters that actually are used to cut the polysilicon into wafers,” Allan told me. “It’s more about making targeted investments in your industrial base in order to produce highly competitive niches as a way to then make you more competitive in that final product.”
This approach prevents countries from simply serving as final assemblers of battery packs or solar panels or other green products — a stage that provides low value-add, as countries aren’t able to capture the benefits of domestic research and development, engineering expertise, or intellectual property. Pinpointing strategic niches also helps countries avoid wasting their money in buzzy industries where they’re simply not competitive.
“The industrial policy race is very much hype-driven. It’s very much driven by, oh my god, we need a hydrogen strategy, and, oh my god, we need a lithium strategy,” Sahay told me. “But that’s not necessarily going to be what your country is going to be good at.” By pointing countries towards the industries and links in the supply chain where they actually could excel, Sahay and Allan can demonstrate they stand to benefit from the clean energy transition at large.
Or to put it more broadly, when done correctly, “industrial policy is climate policy, in the sense that when you advance industry generally, you are actually advancing the climate,” Allan told me. “And climate policy is industrial policy, because when you are trying to advance the climate, you advance the industrial base.”
On diesel backup generators, Chinese rare earths, and geothermal milestones
Current conditions: A polar vortex is sending Arctic air across the Upper Midwest and Northeast, bringing more than a foot of snow to parts of Michigan • In the Pacific Northwest, an atmospheric river is set to bring rain showers on the coast and snow inland • The death toll from flooding across Southeast Asia has surpassed 1,300.
The Department of Transportation is poised to significantly weaken fuel efficiency requirements for tens of millions of new cars and light trucks, President Donald Trump announced Wednesday. Heatmap's Robinson Meyer explained: “The United States essentially has two ways to regulate pollution from cars and light trucks: It can limit greenhouse gas emissions from new cars and trucks, and it can require the fuel economy from new vehicles to get a little better every year. Trump is pulling screws and wires out of both of these systems.” Flanked by auto executives in the Oval Office, Trump announced that new vehicles in 2031 would only need to average 34.5 miles per gallon, down from the 50 miles per gallon goal the Biden administration set. While carmakers publicly cheered the move, executives “privately fretted” to The New York Times “that they are being buffeted by conflicting federal policies” after spending billions of dollars to prepare to manufacture electric vehicles.
The administration claimed the rollback would save Americans $109 billion over five years and shave $1,000 off the average cost of a new car. But as Rob noted in August, the administration’s fight against tailpipe emissions could actually end up raising the price of gasoline.

Secretary of Energy Chris Wright pitched tapping into backup generators at data centers, hospitals, and factories to augment the supply of power on the grid. Speaking at the North American Gas Forum on Tuesday, Wright said the generators — most of which run on diesel, natural gas, or fuels such as propane — could contribute roughly 35 gigawatts of electricity. “We have 35 gigawatts of backup generators that are sitting there today, and you can’t turn them on. That’s just nuts. Emissions rules or whatever … people, come on,” Wright said, according to E&E News. “If we just turn those generators on for a few hours a year, we’ve expanded the capacity of our grid by 35 gigawatts. That’s massive.”
In a post on X, Aaron Bryant, an energy markets analyst at the law firm White & Case, called the proposal “shortsighted at best,” since the generators expose load growth to some measure of commodity risk and “unworkable at worst” because zoning ordinances, air pollution, and noise restrictions may prohibit use of the generators.
The National Petroleum Council, an advisory panel at the Energy Department, submitted its recommendations Wednesday for how to reform federal permitting rules. Among the proposals was an endorsement of an idea to bar federal agencies from yanking already-granted permits. Democrats in Congress put forward the concept to prevent the Trump administration from reversing approvals for offshore turbines and other renewable projects targeted by the White House.
The proposal marks a significant step within the executive branch, given that Trump himself is “the biggest wild card in permitting reform,” as Heatmap’s Jael Holzman wrote last month. But legislation is moving in Congress. In the House, the SPEED Act overwhelmingly won a committee vote last month. Now Arkansas Senator Tom Cotton, a Republican, has introduced a new bill in the Senate with its own House version.
Sign up to receive Heatmap AM in your inbox every morning:
Following a summit between Trump and Chinese President Xi Jinping in October, Beijing agreed to overhaul its licensing regime for approving exports of rare earths to allow for streamlined permits to sell the metals overseas. At least three Chinese manufacturers of rare earth magnets have now secured new licenses to speed up exports to some customers, Reuters reported. It’s a sign of easing tensions between Washington and Beijing, offering some reprieve from the Chinese export restrictions that threatened to choke off the U.S. supply of key metals. But it’s still tenuous. China could ratchet up restrictions again, and the U.S. is still looking to increase domestic production of critical minerals to counter the leverage the People’s Republic wields through its near monopoly on the metals.
If there’s one thing Tim Latimer, the chief executive of the next-generation geothermal company Fervo Energy, wants to see in any permitting reform, it’s measures to making building new transmission lines easier. “The biggest threat to American global competitiveness, and it does not matter if your priorities are climate change, affordability, the AI race, national security or all of the above, is our country’s complete inability to build and upgrade transmission at any meaningful scale,” Latimer wrote in a post on X. Fervo is working on building the nation’s first full-scale next-generation geothermal plant in Utah, and running new transmission lines out to remote parts of the desert where it’s often best to drill for hot rocks is costly.
Fervo isn’t the only geothermal company making news. On Thursday morning, Zanskar, a geothermal startup that uses modern prospecting methods to find new conventional resources, announced that it had made the biggest “blind” discovery in the U.S. in more than 30 years. A “blind” find is a geothermal system that shows no visible signs of what’s below the surface, such as vents or geysers. While companies such as Fervo aim to use fracking technology to create reservoirs in hot rocks located where there aren’t underground aquatic formations to tap into, Zanskar is betting that using artificial intelligence to locate new conventional resources can result in faster, cheaper geothermal plants than next-generation technology can yield.
Here’s a little exclusive for you to end on: I got a copy of a letter signed by dozens of pro-nuclear advocates calling on New York state and local officials to kickstart an effort to rebuild the Indian Point nuclear plant just north of New York City. Describing the “forced premature closure” of the plant as “a major setback for New York,” the letter said the plant could be restored, noting that rising demand for clean, firm electricity has spurred utilities in Michigan, Iowa, and Pennsylvania to embark on historic restarts of decommissioned reactors. “Recommissioning Indian Point would stabilize electricity prices and deliver one of the fastest and largest returns of clean power available anywhere in the country,” the letter reads.
The Trump administration has started to weaken the rules requiring cars and trucks to get more fuel-efficient every year.
In a press event on Wednesday in the Oval Office, flanked by advisors and some of the country’s top auto executives, President Trump declared that the old rules “forced automakers to build cars using expensive technologies that drove up costs, drove up prices, and made the car much worse.”
He said that the rules were part of the “green new scam” and that ditching them would save consumers some $1,000 every year. That framed the rollback as part of the president’s seeming pivot to affordability, which has happened since Democrats trounced Republicans in the November off-cycle elections.
That pivot remains belated and at least a little half-hearted: On Wednesday, Trump made no mention of dropping the auto tariffs that are raising imported car prices by perhaps $5,000 per vehicle, according to Cox Automotive. Ditching the fuel economy rules, too, could increase demand for gasoline and thus raise prices at the pump — although they remain fairly low right now, with the national average below $3 a gallon.
What’s more interesting — and worrying — is that the rules fit into the administration’s broader war on innovation in the American car and light-duty truck sector.
The United States essentially has two ways to regulate pollution from cars and light trucks: It can limit greenhouse gas emissions from new cars and trucks, and it can require the fuel economy from new vehicles to get a little better every year.
Trump is pulling screws and wires out of both of these systems. In the first category, he’s begun to unwind the Environmental Protection Agency’s limits on carbon pollution from cars and light duty trucks, which he termed an “EV mandate.” (The Biden-era rules sought to require about half of new car sales be electric by 2030, although hybrids could help meet that standard.) Trump is also trying to keep the EPA from ever regulating anything to do with carbon pollution again by going after the agency’s “Endangerment Finding” — a scientific assessment that greenhouse gases are dangerous to human wellbeing.
That’s only half of the president’s war on air pollution rules, though. Since the oil crises of the 1970s, the National Highway Traffic Safety Administration has regulated fuel economy for new vehicles under the Corporate Average Fuel Economy, or CAFE, standards. When these rules are binding, the agency can require new cars and trucks sold in the U.S. to get a little more fuel-efficient every year. The idea is that these rules help limit the country’s gasoline consumption, thus keeping a lid on oil prices and letting the whole economy run more efficiently.
President Trump’s signature tax law, the One Big Beautiful Bill Act, already eliminated the fines that automakers have to pay when they fail to meet the standard. That change, pushed by Senator Ted Cruz of Texas, effectively rendered the regulation toothless. But now Trump is weakening the rules just for good measure. (At the press conference on Wednesday, Cruz stood behind the president — and next to Jim Farley, the CEO of Ford.)
Under the new Trump proposal, automakers would need to achieve only an average of 34.5 miles per gallon in 2031. Under Biden’s proposal, they needed to hit 50 miles per gallon that year.
Those numbers, I should add, are somewhat deceptive — because of how CAFE standards are calculated, the headline number is 20% to 30% stricter than a real-world fuel economy number. In essence, that means the new Trump era rules will come out to a real-world mile-per-gallon number in the mid-to-high 20s. That will give automakers ample regulatory room to sell more inefficient and gas-guzzling sport utility vehicles and pickups, which remain more profitable than electric vehicles.
Which is not ideal for air pollution or the energy transition. But the real risk for the American automaking industry is not that Ford might churn out a few extra Escapes over the next several years. It’s that the Trump proposal would eliminate the ability for automakers to trade compliance credits to meet the rules. These credit markets — which allow manufacturers of gas guzzlers to redeem themselves by buying credits generated by cleaner cars — have been a valuable revenue source for new vehicle companies like Tesla, Lucid, and Rivian. The Trump proposal would cut off that revenue — and with it, one of the few remaining ways that automakers are cross-subsidizing EV innovation in the United States.
During his campaign, President Trump said that he wanted the “cleanest air.” That promise is looking as incorrect as his pledge to cut electricity costs in half within a year.