You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
“Additionality” is back.

You may remember “additionality” from such debates as, “How should we structure the hydrogen tax credit?”
Well, it’s back, this time around Meta’s massive investment in nuclear power.
On January 9, the hyperscaler announced that it would be continuing to invest in the nuclear business. The announcement went far beyond its deal last year to buy power from a single existing plant in Illinois and embraced a smorgasbord of financial and operational approaches to nukes. Meta will buy the output for 20 years from two nuclear plants in Ohio, it said, including additional power from increased capacity that will be installed at the plants (as well as additional power from a nuclear plant in Pennsylvania), plus work on developing new, so-far commercially unproven designs from nuclear startups Oklo and TerraPower. All told, this could add up to 6.6 gigawatts of clean, firm power.
Sounds good, right?
Well, the question is how exactly to count that power. Over 2 gigawatts of that capacity is already on the grid from the two existing power plants, operated by Vistra. There will also be an “additional 433 megawatts of combined power output increases” from the existing power plants, known as “uprates,” Vistra said, plus another 3 gigawatts at least from the TerraPower and Oklo projects, which are aiming to come online in the 2030s
Princeton professor and Heatmap contributor Jesse Jenkins cried foul in a series of posts on X and LinkedIn responding to the deal, describing it as “DEEPLY PROBLEMATIC.”
“Additionality” means that new demand should be met with new supply from renewable or clean power. Assuming that Meta wants to use that power to serve additional new demand from data centers, Jenkins argued that “the purchase of 2.1 gigawatts of power … from two EXISTING nuclear power plants … will do nothing but increase emissions AND electricity rates” for customers in the area who are “already grappling with huge bill increases, all while establishing a very dangerous precedent for the whole industry.”
Data center demand is already driving up electricity prices — especially in the area where Meta is signing these deals. Customers in the PJM Interconnection electricity grid, which includes Ohio, have paid $47 billion to ensure they have reliable power over the grid operator’s last three capacity auctions. At least $23 billion of that is attributable to data center usage, according to the market’s independent monitor.
“When a huge gigawatt-scale data center connects to the grid,” Jenkins wrote, “it's like connecting a whole new city, akin to plopping down a Pittsburgh or even Chicago. If you add massive new demand WITHOUT paying for enough new supply to meet that growth, power prices spike! It's the simple law of supply & demand.”
And Meta is investing heavily in data centers within the PJM service area, including its Prometheus “supercluster” in New Albany, Ohio. The company called out this facility in its latest announcement, saying that the suite of projects “will deliver power to the grids that support our operations, including our Prometheus supercluster in New Albany, Ohio.”
The Ohio project has been in the news before and is planning on using 400 megawatts of behind-the-meter gas power. The Ohio Power Siting Board approved 200 megawatts of new gas-fired generation in June.
This is the crux of the issue for Jenkins: “Data centers must pay directly for enough NEW electricity capacity and energy to meet their round-the-clock needs,” he wrote. This power should be clean, both to mitigate the emissions impact of new demand and to meet the goals of hyperscalers, including Meta, to run on 100% clean power (although how to account for that is a whole other debate).
While hyperscalers like Meta still have clean power goals, they have been more sotto voce recently as the Trump administration wages war on solar and wind. (Nuclear, on the other hand, is very much administration approved — Secretary of Energy Chris Wright was at Meta’s event announcing the new nuclear deal.)
Microsoft, for example, mentioned the word “clean” just once in its Trump-approved “Building Community-First AI Infrastructure” manifesto, released Tuesday, which largely concerned how it sought to avoid electricity price hikes for retail customers and conserve water.
It’s not entirely clear that Meta views the entirety of these deals — the power purchase agreements, the uprates, financially supporting the development of new plants — as extra headroom to expand data center development right now. For one, Meta at least publicly claims to care about additionality. Meta’s own public-facing materials describing its clean energy commitments say that a “fundamental tenet of our approach to clean and renewable energy is the concept of additionality: partnering with utilities and developers to add new projects to the grid.”
And it’s already made substantial deals for new clean energy in Ohio. Last summer, Meta announced a deal with renewable developer Invenergy to procure some 440 megawatts of solar power in the state by 2027, for a total of 740 megawatts of renewables in Ohio. So Meta and Jenkins may be less far apart than they seem.
There may well be value in these deals from a sustainability and decarbonization standpoint — not to mention a financial standpoint. Some energy experts questioned Jenkins’ contention that Meta was harming the grid by contracting with existing nuclear plants.
“Based on what I know about these arrangements, they don’t see harm to the market,” Jeff Dennis, a former Department of Energy official who’s now executive director of the Electricity Customer Alliance, an energy buyers’ group that includes Meta, told me.
In power purchase agreements, he said, “the parties are contracting for price and revenue certainty, but then the generator continues to offer its supply into the energy and capacity markets. So the contracting party isn’t siphoning off the output for itself and creating or exacerbating a scarcity situation.”
The Meta deal stands in contrast to the proposed (and later scotched) deal between Amazon and Talen Energy, which would have co-located a data center at the existing Susquehanna nuclear plant and sucked capacity out of PJM.
Dennis said he didn’t think Meta’s new deals would have “any negative impact on prices in PJM” because the plants would be staying in the market and on the grid.
Jenkins praised the parts of the Meta announcement that were both clean and additional — that is, the deals with TerraPower and Oklo, plus the uprates from existing nuclear plants.
“That is a huge purchase of NEW clean supply, and is EXACTLY what hyperscalars [sic] and other large new electricity users should be doing,” Jenkins wrote. “Pay to bring new clean energy online to match their growing demand. That avoids raising rates for other electricity users and ensures new demand is met by new clean supply. Bravo!”
But Dennis argued that you can’t neatly separate out the power purchase agreement for the existing output of the plants and the uprates. It is “reasonable to assume that without an agreement that shores up revenues for their existing output and for maintenance and operation of that existing infrastructure, you simply wouldn't get those upgrades and 500 megawatts of upgrades,” he told me.
There’s also an argument that there’s real value — to the grid, to Meta, to the climate — to giving these plants 20 years of financial certainty. While investment is flooding into expanding and even reviving existing nuclear plants, they don’t always fare well in wholesale power markets like PJM, and saw a rash of plant retirements in the 2010s due to persistently low capacity and energy prices. While the market conditions are now quite different, who knows what the next 20 years might bring.
“From a pure first order principle, I agree with the additionality criticism,” Ethan Paterno, a partner at PA Consulting, an innovation advisory firm, told me. “But from a second or third derivative in the Six Degrees of Kevin Bacon, you can make the argument that the hyperscalers are keeping around nukes that perhaps might otherwise be retired due to economic pressure.”.
Ashley Settle, a Meta spokesperson, told me that the deals “enable the extension of the operational lifespan and increase of the energy production at three facilities.” Settle did not respond, however, when asked how Facebook would factor the deals into its own emissions accounting.
“The only way I see this deal as acceptable,” Jenkins wrote, “is if @Meta signed a PPA with the existing reactors only as a financial hedge & to help unlock the incremental capacity & clean energy from uprates at those plants, and they are NOT counting the capacity or energy attributes from the existing capacity to cover new data center demand.”
There’s some hint that Meta may preserve the additionality concept of matching only new supply with demand, as the announcement refers to “new additional uprate capacity,” and says that “consumers will benefit from a larger supply of reliable, always-ready power through Meta-supported uprates to the Vistra facilities.” The text also refers to “additional 20-year nuclear energy agreements,” however, which would likely not meet strict definitions of additionality as it refers to extending the lifetime and maintaining the output of already existing plants.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
1. Marion County, Indiana — State legislators made a U-turn this week in Indiana.
2. Baldwin County, Alabama — Alabamians are fighting a solar project they say was dropped into their laps without adequate warning.
3. Orleans Parish, Louisiana — The Crescent City has closed its doors to data centers, at least until next year.
A conversation with Emily Pritzkow of Wisconsin Building Trades
This week’s conversation is with Emily Pritzkow, executive director for the Wisconsin Building Trades, which represents over 40,000 workers at 15 unions, including the International Brotherhood of Electrical Workers, the International Union of Operating Engineers, and the Wisconsin Pipe Trades Association. I wanted to speak with her about the kinds of jobs needed to build and maintain data centers and whether they have a big impact on how communities view a project. Our conversation was edited for length and clarity.
So first of all, how do data centers actually drive employment for your members?
From an infrastructure perspective, these are massive hyperscale projects. They require extensive electrical infrastructure and really sophisticated cooling systems, work that will sustain our building trades workforce for years – and beyond, because as you probably see, these facilities often expand. Within the building trades, we see the most work on these projects. Our electricians and almost every other skilled trade you can think of, they’re on site not only building facilities but maintaining them after the fact.
We also view it through the lens of requiring our skilled trades to be there for ongoing maintenance, system upgrades, and emergency repairs.
What’s the access level for these jobs?
If you have a union signatory employer and you work for them, you will need to complete an apprenticeship to get the skills you need, or it can be through the union directly. It’s folks from all ranges of life, whether they’re just graduating from high school or, well, I was recently talking to an office manager who had a 50-year-old apprentice.
These apprenticeship programs are done at our training centers. They’re funded through contributions from our journey workers and from our signatory contractors. We have programs without taxpayer dollars and use our existing workforce to bring on the next generation.
Where’s the interest in these jobs at the moment? I’m trying to understand the extent to which potential employment benefits are welcomed by communities with data center development.
This is a hot topic right now. And it’s a complicated topic and an issue that’s evolving – technology is evolving. But what we do find is engagement from the trades is a huge benefit to these projects when they come to a community because we are the community. We have operated in Wisconsin for 130 years. Our partnership with our building trades unions is often viewed by local stakeholders as the first step of building trust, frankly; they know that when we’re on a project, it’s their neighbors getting good jobs and their kids being able to perhaps train in their own backyard. And local officials know our track record. We’re accountable to stakeholders.
We are a valuable player when we are engaged and involved in these sting decisions.
When do you get engaged and to what extent?
Everyone operates differently but we often get engaged pretty early on because, obviously, our workforce is necessary to build the project. They need the manpower, they need to talk to us early on about what pipeline we have for the work. We need to talk about build-out expectations and timelines and apprenticeship recruitment, so we’re involved early on. We’ve had notable partnerships, like Microsoft in southeast Wisconsin. They’re now the single largest taxpayer in Racine County. That project is now looking to expand.
When we are involved early on, it really shows what can happen. And there are incredible stories coming out of that job site every day about what that work has meant for our union members.
To what extent are some of these communities taking in the labor piece when it comes to data centers?
I think that’s a challenging question to answer because it varies on the individual person, on what their priority is as a member of a community. What they know, what they prioritize.
Across the board, again, we’re a known entity. We are not an external player; we live in these communities and often have training centers in them. They know the value that comes from our workers and the careers we provide.
I don’t think I’ve seen anyone who says that is a bad thing. But I do think there are other factors people are weighing when they’re considering these projects and they’re incredibly personal.
How do you reckon with the personal nature of this issue, given the employment of your members is also at stake? How do you grapple with that?
Well, look, we respect, over anything else, local decision-making. That’s how this should work.
We’re not here to push through something that is not embraced by communities. We are there to answer questions and good actors and provide information about our workforce, what it can mean. But these are decisions individual communities need to make together.
What sorts of communities are welcoming these projects, from your perspective?
That’s another challenging question because I think we only have a few to go off of here.
I would say more information earlier on the better. That’s true in any case, but especially with this. For us, when we go about our day-to-day activities, that is how our most successful projects work. Good communication. Time to think things through. It is very early days, so we have some great success stories we can point to but definitely more to come.
The number of data centers opposed in Republican-voting areas has risen 330% over the past six months.
It’s probably an exaggeration to say that there are more alligators than people in Colleton County, South Carolina, but it’s close. A rural swath of the Lowcountry that went for Trump by almost 20%, the “alligator alley” is nearly 10% coastal marshes and wetlands, and is home to one of the largest undeveloped watersheds in the nation. Only 38,600 people — about the population of New York’s Kew Gardens neighborhood — call the county home.
Colleton County could soon have a new landmark, though: South Carolina’s first gigawatt data center project, proposed by Eagle Rock Partners.
That’s if it overcomes mounting local opposition, however. Although the White House has drummed up data centers as the key to beating China in the race for AI dominance, Heatmap Pro data indicate that a backlash is growing from deep within President Donald Trump’s strongholds in rural America.
According to Heatmap Pro data, there are 129 embattled data centers located in Republican-voting areas. The vast majority of these counties are rural; just six occurred in counties with more than 1,000 people per square mile. That’s compared with 93 projects opposed in Democratic areas, which are much more evenly distributed across rural and more urban areas.
Most of this opposition is fairly recent. Six months ago, only 28 data centers proposed in low-density, Trump-friendly countries faced community opposition. In the past six months, that number has jumped by 95 projects. Heatmap’s data “shows there is a split, especially if you look at where data centers have been opposed over the past six months or so,” says Charlie Clynes, a data analyst with Heatmap Pro. “Most of the data centers facing new fights are in Republican places that are relatively sparsely populated, and so you’re seeing more conflict there than in Democratic areas, especially in Democratic areas that are sparsely populated.”
Our polling reflects this: Rural Republicans exhibit greater resistance to hypothetical data center projects in their communities than urban Republicans: only 45% of GOP voters in rural areas support data centers being built nearby, compared with nearly 60% of urban Republicans.

Such a pattern recently played out in Livingston County, Michigan, a farming area that went 61% for President Donald Trump, and “is known for being friendly to businesses.” Like Colleton County, the Michigan county has low population density; last fall, hundreds of the residents of Howell Township attended public meetings to oppose Meta’s proposed 1,000-acre, $1 billion AI training data center in their community. Ultimately, the uprising was successful, and the developer withdrew the Livingston County project.
Across the five case studies I looked at today for The Fight — in addition to Colleton and Livingston Counties, Carson County, Texas; Tucker County, West Virginia; and Columbia County, Georgia, are three other red, rural examples of communities that opposed data centers, albeit without success — opposition tended to be rooted in concerns about water consumption, noise pollution, and environmental degradation. Returning to South Carolina for a moment: One of the two Colleton residents suing the county for its data center-friendly zoning ordinance wrote in a press release that he is doing so because “we cannot allow” a data center “to threaten our star-filled night skies, natural quiet, and enjoyment of landscapes with light, water, and noise pollution.” (In general, our polling has found that people who strongly oppose clean energy are also most likely to oppose data centers.)
Rural Republicans’ recent turn on data centers is significant. Of 222 data centers that have faced or are currently facing opposition, the majority — 55% —are located in red low-population-density areas. Developers take note: Contrary to their sleepy outside appearances, counties like South Carolina’s alligator alley clearly have teeth.