You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Somebody is going to do it sooner or later. It’s critical to prepare now.

The businessman, philanthropist, and YouTube personality Hank Green recently caused a minor controversy with a video about geoengineering. Discussing the evidence that international regulations on cargo ship fuel, and the resulting huge decline in oceanic aerosol pollution, are partly behind the record-shattering heat this summer, he argued that this was a golden opportunity to study the idea. By putting aerosols — sulfur dioxide or ocean water, possibly — into the atmosphere on purpose (also called solar radiation management), we could cut down on global temperatures.
So many people reacted with fury that the Radiolab podcast invited Green on to discuss the backlash. Many climate scientists also objected. Some argue that even studying geoengineering is unethical, but others raised a more nuanced objection.
“In order to do it intentionally, everyone needs to be on board. Geoengineering has global implications, therefore ethically, morally, it should be a global decision,” said climate scientist Miriam Nielsen in a response video. “I don’t want the use of geoengineering to stop us from making the next Paris Agreement, and I really think that it would,” she added in an interesting and informative conversation with Green and Adam Levy. “It already breaks a bunch of international laws … I would rather focus on — how do we bring the world together on mitigative efforts on reducing our emissions rather than combating future emissions.”
I have a lot of sympathy for this view, but ultimately I don’t accept it. It seems to me almost beyond question at this point that some country or group of countries will opt for geoengineering. The ethical qualms of scientists or climate activists will not stop it. And if the extant international frameworks for climate diplomacy get in the way, they will be torn up. It’s critical both to start research on the question, and to start building an international diplomatic framework to consider and regulate geoengineering.
Get one great climate story in your inbox every day:
Here’s why. Many countries are extremely vulnerable to climate change, and some of them have more than enough economic might and international heft to carry out a unilateral geoengineering scheme. Such a scheme will be cheap compared to the damages inflicted by, say, 2-3 degrees of warming, which is what a recent UN report estimates we are likely to hit by 2100 along the current policy trajectory.
Importantly, that projection is actually a huge improvement relative to the business-as-usual projections from 10 or 20 years ago, when 6 degrees of warming was the status quo track. The world is now moving fairly aggressively on climate policy, thanks to the Inflation Reduction Act, Europe’s crash decarbonization campaign resulting from Vladimir Putin’s war on Ukraine, and massive investment in China. Renewable energy is now cheaper than any form of energy in history, and only getting cheaper. That fact alone will eventually stamp out the use of fossil fuels over time.
In short, the world has made substantial strides towards tackling climate change — but they just aren’t happening fast enough. National grids are clogged; offshore wind is running into financing issues; countries are struggling to assemble electric vehicle supply chains; sources of zero-carbon steel, concrete, and industrial heat are still in their early stages, and so on. Though it’s not yet impossible to keep warming under 1.5 degrees, given political realities around the globe, it is quite hard to imagine.
So consider what, say, China is facing. In 2022, it saw severe drought and heat waves that nearly broke the power grid, with only about 1 degree Celsius of warming. Climate science tells us that droughts and heat waves will be dramatically worse at 2-3 degrees of warming — and if a really severe heat wave coincides with (or causes) a major power outage in an urban center, the death toll could easily reach into the millions.
Then there is sea level rise. According to a 2019 study, along the current sea level rise trajectory, something like 93 million Chinese people will be at risk of annual flooding by 2050 — just 26 years away. A Financial Times analysis estimated that many trillions of dollars of Chinese investment will be threatened by sea level rise by 2100, including capital producing nearly $1 trillion in GDP annually in Shanghai alone.
The communist dictatorship in China is not exactly known for a kindly regard for international norms or environmental protection. On the contrary, it brutally crushed a pro-democracy movement in Hong Kong, it is committing cultural genocide against its Uyghur population, and it has wreaked environmental devastation across the country and the world in pursuit of ultra-rapid economic growth. Indeed, as of 2021 it emitted over 60 percent more carbon dioxide than the U.S. and the European Union put together.
Does this sound like a country likely to respect international agreements — or laws of any kind — if they stand in the way of what it sees as a cheap and easy way to protect the lives of literally tens of millions of its citizens along with its most valuable economic complexes? Even the most responsible liberal democracy would surely be tempted — and to be fair, a democracy might easily be the first to try, including the U.S.
Even if countries could somehow be coerced into halting their geoengineering — a ludicrous prospect with a country as powerful as China — that raises an even worse possibility. The most dangerous scenario here is for solar dimming programs to be started or stopped abruptly. One of the biggest reason climate change is a problem is that it is causing rapid and chaotic changes to weather patterns — severe drought followed by flooding, unseasonable heat followed by a cold snap, and so on, which damages ecosystems and drives species to extinction. Rapid, unplanned geoengineering schemes being switched on and off could cause the same problems even faster than greenhouse gas emissions have done.
Suppose some country suffers a seven-figure casualty event from a climate disaster, decides it is facing an existential threat, and attempts a half-baked solar dimming program in a panic. Then that causes unforeseen disruptions in precipitation patterns in a neighboring country, which responds by launching missile strikes on the solar dimming installations. The climate could be yanked back and forth by a half-degree Celsius or more in the space of years or months.
I can understand why climate scientists would want to preserve the nascent climate diplomacy system. But any international agreement is no match for raw power politics in a pinch. International law is already routinely ignored all over the world, and the frankly quite toothless diplomatic climate framework certainly won’t prevent a powerful nation that feels backed into a corner from exerting every effort to protect itself.
The way forward is to produce the strongest possible body of evidence on the question, so that the best solar dimming agents can be determined, along with the least harmful way they could be used, and to start international discussions to manage any future geoengineering program. That way it could be carried out with wide support, hopefully with some compensation funds available to nations that are negatively affected, with the overarching idea that it will only buy time before carbon removal technologies can be spun up.
It will no doubt be very difficult to assemble any kind of international consensus around this question. But the alternative is it happening anyway without enough planning or study.
Read more about geoengineering:
‘Oppenheimer’ Is a Window Into One of the Greatest Climate Debates
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
One of the buzziest climate tech companies in our Insiders Survey is pushing past the “missing middle.”
One of the buzziest climate tech companies of the past year is proving that a mature, hitherto moribund technology — conventional geothermal — still has untapped potential. After a breakthrough year of major discoveries, Zanskar has raised a $115 million Series C round to propel what’s set to be an investment-heavy 2026, as the startup plans to break ground on multiple geothermal power plants in the Western U.S.
“With this funding, we have a six power plant execution plan ahead of us in the next three, four years,” Diego D’Sola, Zanskar’s head of finance, told me. This, he estimates, will generate over $100 million of revenue by the end of the decade, and “unlock a multi-gigawatt pipeline behind that.”
The size of the round puts a number to climate world’s enthusiasm for Zanskar. In Heatmap’s Insider’s Survey, experts identified Zanskar as one of the most promising climate tech startups in operation today.
Zanskar relies on its suite of artificial intelligence tools to locate previously overlooked conventional geothermal resources — that is, naturally occurring reservoirs of hot water and steam. Trained on a combination of exclusive subsurface datasets, modern satellite and remote sensing imagery, and fresh inputs from Zanksar’s own field team, the company’s AI models can pinpoint the most promising sites for exploration and even guide exactly what angle and direction to drill a well from.
Early last year, Zanskar announced that it had successfully revitalized an underperforming geothermal power plant in New Mexico by drilling a new pumped well nearby, which has since become the most productive well of this type in the U.S. That was followed by the identification of a large geothermal resource in northern Nevada, where exploratory wells had been drilled for decades but no development had ever occurred. Just last month, the company revealed a major discovery in western Nevada — a so-called “blind” geothermal system with no visible surface activity such as geysers or hot springs, and no history of exploratory drilling.
“This is a site nobody had ever had on the radar, no prior exploration,” Carl Hoiland, Zanskar’s CEO, told me of this latest discovery, dubbed “Big Blind.” He described it as a tipping point for the industry, which had investors saying, “Okay, this is starting to look more like a trend than just an anomaly.”
Spring Lane Capital led Zanskar’s latest round, which also included Obvious Ventures, Union Square Ventures, and Lowercarbon Capital, among others. Spring Lane aims to fill the oft-bemoaned “missing middle” of climate finance — the stage at which a startup has matured beyond early-stage venture backing but is still considered too risky for more traditional infrastructure investors.
Zanskar now finds itself squarely in that position, needing to finance not just the drills, turbines, and generators for its geothermal plants, but also the requisite permitting and grid interconnection costs. D’Sola told me that he expects the company to close its first project financing this quarter, explaining that its ambitious plans require “north of $600 million in total capital expenditures, the vast majority of which will come from non-dilutive sources or project level financing.”
Unsurprisingly, the company anticipates that data centers will be some of its first customers, with hyperscalers likely working through utilities to secure the clean energy attributes of Zanskar’s grid-connected power. And while the West Coast isn’t the primary locus of today’s data center buildout, Hoiland thinks Zanskar’s clean, firm, low-cost power will help draw the industry toward geothermally rich states such as Utah and Nevada, where it’s focused.
“We see a scenario where the western U.S. is going to have some of the cheapest carbon-free energy, maybe anywhere in the world, but certainly in the United States.” Hoiland told me.
Just how cheap are we talking? Using the levelized cost of energy — which averages the lifetime cost of building and operating a power plant per unit of electricity generated — Zanskar plans to deliver electricity under $45 per megawatt-hour by the end of this decade. For context, the Biden administration set that same cost target for next-generation geothermal systems such as those being pursued by startups like Fervo Energy and Eavor — but projected it wouldn’t be reached 2035.
At this price point, conventional geothermal would be cheaper than natural gas, too. The LCOE for a new combined-cycle natural gas plant in the U.S. typically ranges from $48 to $107 per megawatt-hour.
That opens up a world of possibilities, Hoiland said, with the startup’s’s most optimistic estimates showing that conventional geothermal could potentially supply all future increases in electricity demand. “But really what we’re trying to meet is that firm, carbon-free baseload requirement, which by some estimates needs to be 10% to 30% of the total mix,” Hoiland said. “We have high confidence the resource can meet all of that.”
On New Jersey’s rate freeze, ‘global water bankruptcy,’ and Japan’s nuclear restarts
Current conditions: A major winter storm stretching across a dozen states, from Texas to Delaware, and could hit by midweek • The edge of the Sahara Desert in North Africa is experiencing sandstorms kicked up by colder air heading southward • The Philippines is bracing for a tropical cyclone heading toward northern Luzon.
Mikie Sherrill wasted no time in fulfilling the key pledge that animated her campaign for governor of New Jersey. At her inauguration Tuesday, the Democrat signed a series of executive orders aimed at constraining electricity bills and expanding energy production in the state. One order authorized state utility regulators to freeze rate hikes. Another directed the New Jersey Board of Public Utilities “to open solicitations for new solar and storage power generation, to modernize gas and nuclear generation so we can lower utility costs over the long term.” Now, as Heatmap’s Matthew Zeitlin put it, “all that’s left is the follow-through,” which could prove “trickier than it sounds” due to “strict deadlines to claim tax credits for renewable energy development looming.”
Last month, the environmental news site Public Domain broke a big story: Karen Budd-Falen, the No. 3 official at the Department of the Interior, has extensive financial ties to the controversial Thacker Pass lithium mine in northern Nevada that the Trump administration is pushing to fast track. Now The New York Times is reporting that House Democrats are urging the Interior Department’s inspector general to open an investigation into the multimillion-dollar relationship Budd-Falen’s husband has with the mine’s developer. Frank Falen, her husband, sold water from a family ranch in northern Nevada to the subsidiary of Lithium Americas for $3.5 million in 2019, but the bulk of the money from the sale depended on permit approval for the project. Budd-Falen did not reveal the financial arrangement on any of her four financial disclosures submitted to the federal government when she worked for the Interior Department during President Donald Trump’s first term from 2018 to 2021.
House Republicans, meanwhile, are planning to vote this week to undo Biden-era restrictions on mining near more than a million acres of Minnesota wilderness. “Mining is huge in Minnesota. And all mining helps the school trust fund in Minnesota as well. So it benefits all schools in the state,” Representative Pete Stauber, a Minnesota Republican and the chair of the Natural Resources Subcommittee on Energy and Mineral Resources, said of the rule-killing bill he sponsored. While the vote is expected to draw blowback from environmentalists, E&E News noted that it could also agitate proceduralists who oppose the GOP’s continued “use of the rule-busting Congressional Review Act for actions that have not been traditionally seen as rules.” Still, the move is likely to fuel the dealmaking boom for critical minerals. As Heatmap’s Katie Brigham wrote in September, “everybody wants to invest” in startups promising to mine and refine the metals over which China has a near monopoly.
Sign up to receive Heatmap AM in your inbox every morning:
A new United Nations report declares that the world has entered an era of “global water bankruptcy,” putting billions of people at risk. In an interview with The Guardian, Kaveh Madani, the report’s lead author, said that while not every basin and country is directly at risk, trade and migration are set to face calamity from water shortages. Upward of 75% of people live in countries classified as water insecure or critically water insecure, and 2 billion people live on land that is sinking as groundwater aquifers collapse. “This report tells an uncomfortable truth: Many critical water systems are already bankrupt,” Madani said. “It’s extremely urgent [because] no one knows exactly when the whole system would collapse.”

The Democratic Republic of the Congo has given the U.S. government a vetted list of mining and processing projects open to American investment. The shortlist, which Mining.com said was delivered to U.S. officials last week, includes manganese, gold, and cassiterite licenses; a copper-cobalt project and a germanium-processing venture; four gold permits; a lithium license; and mines producing cobalt, gold, and tungsten. The potential deals are an outgrowth of the peace agreement Trump brokered between the DRC and Rwanda-backed rebels, and could offer Washington a foothold in a mineral-rich country whose resources China has long dominated. But establishing an American presence in an unstable African country is a risky investment. As I reported for Heatmap back in October, the Denver-based Energy Fuels’ $2 billion mining project in Madagascar was suddenly thrown into chaos when the island nation’s protests resulted in a coup, though the company has said recently it’s still moving forward.
The Tokyo Electric Power Company is delaying the restart of the Kashiwazaki Kariwa nuclear power station in western Japan after an alarm malfunction. The alarm system for the control rods that keep the fission reaction in check failed to sound during a test operation on Tuesday, Tepco said. The world’s largest nuclear plant had been scheduled to restart one of its seven reactors on Tuesday. Fuel loading for the reactor, known as Unit 6, was completed in June. It’s unclear when the restart will now take place.
The delay marks a setback for Prime Minister Sanae Takaichi, who has made restarting the reactors idled after the 2011 Fukushima disaster and expanding the nuclear industry a top priority, as I told you in October. But as I wrote last month in an exclusive about Japan’s would-be national small modular reactor champion, the country has a number of potential avenues to regain its nuclear prowess beyond just reviving its existing fleet.
As a fourth-generation New Yorker, I’m qualified to say something controversial: I love, and often even prefer, Montreal-style bagels. They’re smaller, more efficient, and don’t deliver the same carbohydrate bomb to my gut. Now the best-known Montreal-style bagel place in the five boroughs has found a way to use the energy needed to make their hand-rolled, wood-fired bagels more efficiently, too. Black Seed Bagels’ catering kitchen in northern Brooklyn is now part of a battery pilot program run by David Energy, a New York-based retail energy provider. The startup supplied suitcase-sized batteries for free last August, allowing Black Seed to disconnect from ConEdison’s grid during hours when electricity rates are particularly high. “We’re in the game of nickels and dimes,” Noah Bernamoff, Black Seed’s co-owner, told Canary Media. “So we’re always happy to save the money.” Wise words.
Rob talks through Rhodium Groups’s latest emissions report with climate and energy director Ben King.
America’s estimated greenhouse gas emissions rose by 2.4% last year — which is a big deal since they had been steady or falling in 2023 and 2024. More ominously, U.S. emissions grew faster than our gross domestic product last year, suggesting that the economy got less efficient from a climate pollution perspective.
Is this Trump’s fault? The AI boom’s? Or was it a weird fluke? In this week’s Shift Key episode, Rob talks to Ben King, a climate and energy director at the Rhodium Group, about why U.S. emissions grew and what it says about the underlying structure of the American economy. They talk about the power grid, the natural gas system, and whether industry is going to overtake other emissions drivers as once thought.
Shift Key is hosted by Robinson Meyer, the founding executive editor of Heatmap, and Jesse Jenkins, a professor of energy systems engineering at Princeton University. Jesse is off this week.
Subscribe to “Shift Key” and find this episode on Apple Podcasts, Spotify, Amazon, or wherever you get your podcasts.
You can also add the show’s RSS feed to your podcast app to follow us directly.
Here is an excerpt from our conversation:
Robinson Meyer: At the same time there’s been rising total electrification of the vehicle fleet, there’s also been rising hybrid and plug-in hybrid sales. Do we have a sense of how that breakdown is happening, in terms of reduced carbon intensity of the transportation sector and the light duty fleet?
Ben King: It’s a good question. We haven’t disaggregated the … When I say electric vehicles, I’m talking broadly about both full battery electric, and then plug-in hybrids. And then, I think we say this in paper, but I think there was pretty robust growth for gasoline hybrids as which, you know, relative to just a pure gas car, is better from an emissions perspective.
Meyer: Well, it’s funny because if you care about decarbonization and getting to net zero as soon as possible, you could have to poo poo hybrids. But if you’re actually involved in the game to just keep as much emissions out of the sky as possible, and you’re looking to net those 2% declines every year, hybrids are pretty important because they are basically a drop-in replacement to gasoline car use that burns less gasoline.
King: The other interesting thing that gasoline hybrids does for the sector is it finds interesting unanticipated uses for all this battery manufacturing capacity that we’ve built in the U.S., or that we stand to build. Our forecast for pure EVs — so battery electrics, plug-in hybrids — looks a little worse in the out years because of the tax credits going away, because of the EPA tailpipe regulations going away at the same time that the anticipated demand pull from those policies, plus the advanced manufacturing tax credit — the 45X tax credit — has really been wildly successful in standing up a battery manufacturing industry here in the U.S.
If you want that capacity to be around, one thing that you could do with those batteries is put them into hybrids, right? You might have to retool the line a little bit to accommodate different sizes and stuff, build the expertise, build the workforce, etc., such that when the floodgates open again for electric vehicle adoption, for instance, we’ve got substantial battery manufacturing capacity here domestically.
Mentioned:
Rhodium Group: Preliminary US Greenhouse Gas Emissions Estimates for 2025
Rob on Rhodium’s 2023 emissions report
And here’s Rhodium’s 2024 emissions report
This episode of Shift Key is sponsored by …
Heatmap Pro brings all of our research, reporting, and insights down to the local level. The software platform tracks all local opposition to clean energy and data centers, forecasts community sentiment, and guides data-driven engagement campaigns. Book a demo today to see the premier intelligence platform for project permitting and community engagement.
Music for Shift Key is by Adam Kromelow.