You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Why thermal energy storage is poised for a breakout year.

One of the oldest ways to store up energy is in hot rocks. Egyptians built adobe homes millennia ago that absorbed heat during the day and released it at night, and wood-fired ovens with bricks that radiate residual heat have been around since the Middle Ages.
Now, this ancient form of heating is poised for a breakout year as one of the hottest things in climate tech: thermal batteries. These aren’t the kinds of batteries you’d find in a laptop or electric vehicle. Instead, these stationary, shipping container-sized units can provide the high temperatures necessary to power hard-to-decarbonize industrial processes like smelting or chemical manufacturing. And thanks to the changing economics of clean energy and a generous tax credit in Biden’s Inflation Reduction Act, investors are increasingly bullish about the technology, helping Silicon Valley startups Antora Energy and Rondo Energy dramatically scale up production with new gigafactories.
The underlying technology is fairly basic. Using essentially the same technology as a toaster, electricity from renewable energy is converted into heat and then stored in thermally conductive rocks or bricks. That heat is then delivered directly as hot air or steam to the industrial facilities that the stationary batteries are sited on. Rondo says it can supply continuous heat at full capacity — that’s over 1,000° Celsius — for 16 to 18 hours, and Antora’s system is rated at 25 hours, helping fill the gaps when sun and wind resources are scarce.

The climate benefits of this process are clear — and potentially huge. Heat alone comprises half of the world’s total energy consumption, and about 10% of global CO2 emissions come from burning fossil fuels to generate the high temperatures necessary for industrial processes like steel and cement production, chemicals manufacturing, and minerals smelting and refining. These industries are notoriously hard to decarbonize because burning gas or coal has been much cheaper than using electricity to generate high heat.
That’s also why we haven’t traditionally heard a lot about thermal batteries. Before renewables became ubiquitous, the tech just wouldn’t have been very clean or very cheap.
But thanks to the rapidly falling cost of wind and solar, its economics are looking increasingly promising. “There’s this glut of cheap, clean power that is just waiting to be used,” Justin Briggs, Antora’s co-founder and COO, told me. “It’s just going to waste in a lot of cases already.”
John O’Donnell, the co-founder and CEO of Rondo, concurred.“This industrial decarbonization is going to start out absolutely absorbing those negative and zero prices,” he told me. “But it is also going to drive massive new construction of new renewables specifically for its own purpose.”
Of course thermal batteries aren’t the only technology trying to solve industrial heat emissions. Concentrating solar thermal power systems can store the sun’s heat in molten salts, carbon capture and storage systems can pull the emissions from natural gas combustion at the source, and green hydrogen can be combusted for heat delivery.
Indeed, the same forces making thermal energy more attractive are also benefiting green hydrogen in particular. Cheap renewables and lucrative hydrogen subsidies in the IRA mean green hydrogen is also poised to rapidly fall in price. But proponents of thermal batteries argue their technology is much more efficient.
Electrical resistance heating (i.e. turning electricity into heat like a toaster) is already a 100% efficient process. And after storing that heat in rocks for hours or days, you still can get over 90% of it back out. But producing green hydrogen through electrolysis and subsequently combusting it for heat is generally only about 50-66% efficient overall, says Nathan Iyer, a senior associate at the think tank RMI. Although emerging electrolyzer technologies like solid oxide fuel cells can push efficiencies over 80%, in part by recycling waste heat, many green hydrogen production methods could require around 1.5 to two times the amount of renewable electricity as thermal batteries to generate the same amount of heat.
“Pretty much all of the major models are saying thermal batteries are winning when they run all of their optimizations,” Iyer said. “They’re finding a huge chunk of industrial heat is unlocked by these thermal batteries.”
However, when it comes to the most heat-intensive industries, such as steel and cement production, combusting green hydrogen directly where it’s needed could prove much easier than generating and transporting the heat from thermal batteries. As Iyer told me, “At a certain level of heat, the materials that can actually handle the heat and move the heat around the facility are very, very rare.”
Iyer says these challenges begin around 600° or 700° Celsius. But the lion’s share of industrial processes take place below this temperature range, for use cases that thermal batteries appear well-equipped to handle.
And now, the gigafactories are on their way. Rondo has partnered with one of its investors, Thailand-based Siam Cement Group, to scale production of its heat battery from 2.4 gigawatt-hours per year to 90 GWh per year, which will equal about 200-300 battery units. This expanded facility would be the largest battery manufacturing plant in the world today — about 2.5 times the size of Tesla’s Gigafactory in Nevada.
Rondo, which has raised $82 million to date, says it can scale rapidly because its tech is already so well understood. It relies on the same type of refractory brick that’s found in Cowper stoves, a centuries old technology used to recycle heat from blast furnaces.
In Rondo’s case, renewable electricity is used to heat the bricks instead. Then, air is blown through the bricks and superheated to over 1,000° Celsius before being delivered to the end customer as either heat through a short high-temperature duct or as steam through a standard boiler tube.
“We’re using exactly the same heating element material that’s in your toaster, exactly the same brick material that’s in all those steel mills, exactly the same boiler design and boiler materials so that we have as little to prove as possible,” O’Donnell says.
Currently, Rondo operates one small, 2 megawatt-hour commercial facility at a Calgren ethanol plant in California. The company hopes to expand its U.S. footprint, something the IRA will help catalyze. Last month’s guidelines from the IRS clarify that thermal batteries are eligible for a $45 per kilowatt-hour tax credit, which will help them compete with cheap natural gas in the U.S.
Antora is already planning to produce batteries domestically, recently launching its new manufacturing facility in San Jose, California. The company has raised $80 million to date, and operates a pilot plant in Fresno, California. Similar to Rondo, Antora’s tech relies on common materials, in this case low-grade carbon blocks. “It’s an extremely low-cost material. It’s produced at vast scales already,” says Briggs.

When heated with renewable electricity, these blocks emit an intense glow. Much like the sun, that thermal glow can then be released as a beam of 1,500° Celsius heat and light through a shutter on the box.
“And you can do one of two things with that beam of light. One, you can let that deliver thermal energy to an industrial process,” says Briggs. Or Antora’s specialized thermophotovoltaic panels can convert that hot light back into electricity for a variety of end uses.
It’s all very promising, but ultimately unproven at scale, and the companies wouldn’t disclose early customers or projects. But they have some big names behind them. Both Antora and Rondo are backed by the Bill Gates-funded Breakthrough Energy Ventures. Antora also receives funding from Lowercarbon Capital, Shell Ventures, and BHP Ventures, indicating that the oil, gas, petrochemical, and mining industries are taking note.
Along with funding from Energy Impact Partners, Rondo has a plethora of industry backers too, including Siam Cement Group, TITAN Cement Group, mining giant Rio Tinto, Microsoft’s Climate Innovation Fund, Saudi chemicals company SABIC, and oil company Saudi Aramco.
“The investors that just joined us have giant needs,” O’Donnell says of the company’s decision to massively ramp up manufacturing. “Rio Tinto has announced 50% decarbonization by 2030. Microsoft is buying 24-hour time-matched energy in all kinds of places. SABIC and Aramco have enormous steam needs that they want to decarbonize.”
Primary uses of this tech will likely include chemical manufacturing, mineral refining, food processing and paper and biofuel production. Industries like these, which require heat below 1,000° Celsius (and often much less), account for 68% of all industrial emissions. While steel and cement production are two of industry’s biggest emitters, their heat needs can exceed 1,500° Celsius, temperatures that Rondo and Antora admit are more technically challenging to achieve.
In any case, 2024 is the year when hot rocks could start making a dent in decarbonization. The IRA’s tax credits mean this emergent tech could become competitive in more markets, beyond areas with excess renewable power or substantial carbon taxes. This is the year that Antora says they’ll begin mass production, and Rondo’s first commercial projects are expected to come online.
As O’Donnell says, “This is not 10 years away. It’s not five years away. It’s right now.”
Editor’s note: This article was updated after publication to account for emerging electrolyzer technologies.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
There has been no new nuclear construction in the U.S. since Vogtle, but the workers are still plenty busy.
The Trump administration wants to have 10 new large nuclear reactors under construction by 2030 — an ambitious goal under any circumstances. It looks downright zany, though, when you consider that the workforce that should be driving steel into the ground, pouring concrete, and laying down wires for nuclear plants is instead building and linking up data centers.
This isn’t how it was supposed to be. Thousands of people, from construction laborers to pipefitters to electricians, worked on the two new reactors at the Plant Vogtle in Georgia, which were intended to be the start of a sequence of projects, erecting new Westinghouse AP1000 reactors across Georgia and South Carolina. Instead, years of delays and cost overruns resulted in two long-delayed reactors 35 miles southeast of Augusta, Georgia — and nothing else.
“We had challenges as we were building a new supply chain for a new technology and then workforce,” John Williams, an executive at Southern Nuclear Operating Company, which owns over 45% of Plant Vogtle, said in a webinar hosted by the environmental group Resources for the Future in October.
“It had been 30 years since we had built a new nuclear plant from scratch in the United States. Our workforce didn’t have that muscle memory that they have in other parts of the world, where they have been building on a more regular frequency.”
That workforce “hasn’t been building nuclear plants” since heavy construction stopped at Vogtle in 2023, he noted — but they have been busy “building data centers and car manufacturing in Georgia.”
Williams said that it would take another “six to 10” AP1000 projects for costs to come down far enough to make nuclear construction routine. “If we were currently building the next AP1000s, we would be farther down that road,” he said. “But we’ve stopped again.”
J.R. Richardson, business manager and financial secretary of the International Brotherhood of Electric Workers Local 1579, based in Augusta, Georgia, told me his union “had 2,000 electricians on that job,” referring to Vogtle. “So now we have a skill set with electricians that did that project. If you wait 20 or 30 years, that skill set is not going to be there anymore.”
Richardson pointed to the potential revitalization of the failed V.C. Summer nuclear project in South Carolina, saying that his union had already been reached out to about it starting up again. Until then, he said, he had 350 electricians working on a Meta data center project between Augusta and Atlanta.
“They’re all basically the same,” he told me of the data center projects. “They’re like cookie cutter homes, but it’s on a bigger scale.”
To be clear, though the segue from nuclear construction to data center construction may hold back the nuclear industry, it has been great for workers, especially unionized electrical and construction workers.
“If an IBEW electrician says they're going hungry, something’s wrong with them,” Richardson said.
Meta’s Northwest Louisiana data center project will require 700 or 800 electricians sitewide, Richardson told me. He estimated that of the IBEW’s 875,000 members, about a tenth were working on data centers, and about 30% of his local were on a single data center job.
When I asked him whether that workforce could be reassembled for future nuclear plants, he said that the “majority” of the workforce likes working on nuclear projects, even if they’re currently doing data center work. “A lot of IBEW electricians look at the longevity of the job,” Richardson told me — and nuclear plants famously take a long, long time to build.
America isn’t building any new nuclear power plants right now (though it will soon if Rick Perry gets his way), but the question of how to balance a workforce between energy construction and data center projects is a pressing one across the country.
It’s not just nuclear developers that have to think about data centers when it comes to recruiting workers — it’s renewables developers, as well.
“We don’t see people leaving the workforce,” said Adam Sokolski, director of regulatory and economic affairs at EDF Renewables North America. “We do see some competition.”
He pointed specifically to Ohio, where he said, “You have a strong concentration of solar happening at the same time as a strong concentration of data center work and manufacturing expansion. There’s something in the water there.”
Sokolski told me that for EDF’s renewable projects, in order to secure workers, he and the company have to “communicate real early where we know we’re going to do a project and start talking to labor in those areas. We’re trying to give them a market signal as a way to say, We’re going to be here in two years.”
Solar and data center projects have lots of overlapping personnel needs, Sokolski said. There are operating engineers “working excavators and bulldozers and graders” or pounding posts into place. And then, of course, there are electricians, who Sokolski said were “a big, big piece of the puzzle — everything from picking up the solar panel off from the pallet to installing it on the racking system, wiring it together to the substations, the inverters to the communication systems, ultimately up to the high voltage step-up transformers and onto the grid.”
On the other hand, explained Kevin Pranis, marketing manager of the Great Lakes regional organizing committee of the Laborers’ International Union of North America, a data center is like a “fancy, very nice warehouse.” This means that when a data center project starts up, “you basically have pretty much all building trades” working on it. “You’ve got site and civil work, and you’re doing a big concrete foundation, and then you’re erecting iron and putting a building around it.”
Data centers also have more mechanical systems than the average building, “so you have more electricians and more plumbers and pipefitters” on site, as well.
Individual projects may face competition for workers, but Pranis framed the larger issue differently: Renewable energy projects are often built to support data centers. “If we get a data center, that means we probably also get a wind or solar project, and batteries,” he said.
While the data center boom is putting upward pressure on labor demand, Pranis told me that in some parts of the country, like the Upper Midwest, it’s helping to compensate for a slump in commercial real estate, which is one of the bread and butter industries for his construction union.
Data centers, Pranis said, aren’t the best projects for his members to work on. They really like doing manufacturing work. But, he added, it’s “a nice large load and it’s a nice big building, and there’s some number of good jobs.”
A conversation with Dustin Mulvaney of San Jose State University
This week’s conversation is a follow up with Dustin Mulvaney, a professor of environmental studies at San Jose State University. As you may recall we spoke with Mulvaney in the immediate aftermath of the Moss Landing battery fire disaster, which occurred near his university’s campus. Mulvaney told us the blaze created a true-blue PR crisis for the energy storage industry in California and predicted it would cause a wave of local moratoria on development. Eight months after our conversation, it’s clear as day how right he was. So I wanted to check back in with him to see how the state’s development landscape looks now and what the future may hold with the Moss Landing dust settled.
Help my readers get a state of play – where are we now in terms of the post-Moss Landing resistance landscape?
A couple things are going on. Monterey Bay is surrounded by Monterey County and Santa Cruz County and both are considering ordinances around battery storage. That’s different than a ban – important. You can have an ordinance that helps facilitate storage. Some people here are very focused on climate change issues and the grid, because here in Santa Cruz County we’re at a terminal point where there really is no renewable energy, so we have to have battery storage. And like, in Santa Cruz County the ordinance would be for unincorporated areas – I’m not sure how materially that would impact things. There’s one storage project in Watsonville near Moss Landing, and the ordinance wouldn’t even impact that. Even in Monterey County, the idea is to issue a moratorium and again, that’s in unincorporated areas, too.
It’s important to say how important battery storage is going to be for the coastal areas. That’s where you see the opposition, but all of our renewables are trapped in southern California and we have a bottleneck that moves power up and down the state. If California doesn’t get offshore wind or wind from Wyoming into the northern part of the state, we’re relying on batteries to get that part of the grid decarbonized.
In the areas of California where batteries are being opposed, who is supporting them and fighting against the protests? I mean, aside from the developers and an occasional climate activist.
The state has been strongly supporting the industry. Lawmakers in the state have been really behind energy storage and keeping things headed in that direction of more deployment. Other than that, I think you’re right to point out there’s not local advocates saying, “We need more battery storage.” It tends to come from Sacramento. I’m not sure you’d see local folks in energy siting usually, but I think it’s also because we are still actually deploying battery storage in some areas of the state. If we were having even more trouble, maybe we’d have more advocacy for development in response.
Has the Moss Landing incident impacted renewable energy development in California? I’ve seen some references to fears about that incident crop up in fights over solar in Imperial County, for example, which I know has been coveted for development.
Everywhere there’s batteries, people are pointing at Moss Landing and asking how people will deal with fires. I don’t know how powerful the arguments are in California, but I see it in almost every single renewable project that has a battery.
Okay, then what do you think the next phase of this is? Are we just going to be trapped in a battery fire fear cycle, or do you think this backlash will evolve?
We’re starting to see it play out here with the state opt-in process where developers can seek state approval to build without local approval. As this situation after Moss Landing has played out, more battery developers have wound up in the opt-in process. So what we’ll see is more battery developers try to get permission from the state as opposed to local officials.
There are some trade-offs with that. But there are benefits in having more resources to help make the decisions. The state will have more expertise in emergency response, for example, whereas every local jurisdiction has to educate themselves. But no matter what I think they’ll be pursuing the opt-in process – there’s nothing local governments can really do to stop them with that.
Part of what we’re seeing though is, you have to have a community benefit agreement in place for the project to advance under the California Environmental Quality Act. The state has been pretty strict about that, and that’s the one thing local folks could still do – influence whether a developer can get a community benefits agreement with representatives on the ground. That’s the one strategy local folks who want to push back on a battery could use, block those agreements. Other than that, I think some counties here in California may not have much resistance. They need the revenue and see these as economic opportunities.
I can’t help but hear optimism in your tone of voice here. It seems like in spite of the disaster, development is still moving forward. Do you think California is doing a better or worse job than other states at deploying battery storage and handling the trade offs?
Oh, better. I think the opt-in process looks like a nice balance between taking local authority away over things and the better decision-making that can be brought in. The state creating that program is one way to help encourage renewables and avoid a backlash, honestly, while staying on track with its decarbonization goals.
The week’s most important fights around renewable energy.
1. Nantucket, Massachusetts – A federal court for the first time has granted the Trump administration legal permission to rescind permits given to renewable energy projects.
2. Harvey County, Kansas – The sleeper election result of 2025 happened in the town of Halstead, Kansas, where voters backed a moratorium on battery storage.
3. Cheboygan County, Michigan – A group of landowners is waging a new legal challenge against Michigan’s permitting primacy law, which gives renewables developers a shot at circumventing local restrictions.
4. Klamath County, Oregon – It’s not all bad news today, as this rural Oregon county blessed a very large solar project with permits.
5. Muscatine County, Iowa – To quote DJ Khaled, another one: This county is also advancing a solar farm, eliding a handful of upset neighbors.