You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Climate advocates have never met a solution they couldn’t argue about.
The end of 2024 marks the end of four of the busiest years the climate and clean energy community has seen to date. I think it's safe to say the energy transition is in full swing (despite certain opinions to the contrary), even if it's not yet on a glide path to a future that would avoid devastating climate impacts.
But with progress comes a new kind of conflict: infighting. Which climate solutions are the best climate solutions? How can we implement them the right way? When should other priorities, like affordability and national security, come first, if they should at all? Are those trade-offs even real? Or are they fossil fuel propaganda?
In a fantastic piece for Heatmap last year, researcher Joshua Lappen drew attention to this increasingly combative undercurrent in the climate coalition, inflamed by the debate over whether a compromise on permitting reform would be better for the climate in the long run than no reform at all. That fight — along with the related question of whether conservationists are slowing climate action — continued into 2024. But it wasn’t the only thing climate advocates fought about. Here are four debates that dominated the discourse this year that I think will continue into 2025.
Biden ignited a firestorm of controversy in January when he paused approvals of new liquefied natural gas export terminals until the Department of Energy could re-evaluate LNG’s potential economic and environmental impacts. The move followed protests from environmental groups that had named these facilities their number one climate bogeyman, arguing that new terminals would, as Bill McKibben put it, “install our reliance on fossil fuels for decades to come.”
What followed was much back and forth about whether growing U.S. LNG exports would help or hurt efforts to stop climate change. To be sure, producing and burning natural gas releases planet-warming emissions. But past government and academic studies have found that exporting U.S. natural gas could result in lower global emissions overall by helping other countries replace dirtier fuels such as coal or natural gas from Russia, where the industry has much higher methane emissions. Environmentalists pushed back on that narrative, citing a study by Robert Howarth, a Cornell scientist, which found that producing and transporting LNG could be worse for the climate than coal. Critics then pounced on Howarth's study, accusing him of using flawed assumptions about upstream methane emissions, LNG tanker size, and shipping route distances.
Ultimately, calculating the emissions impact of increased LNG exports requires making a lot of assumptions. How can we know, for example, whether creating a cheap supply of natural gas will displace coal or deter adoption of renewables? As Arvind Ravikumar, an expert in energy emissions modeling, told my colleague Matthew Zeitlin, “There’s no right answer. It depends on who buys, what time frame, which country, and how are they using LNG.”
A week before Christmas, the Biden administration finally put out its long-awaited study. It modeled a number of different scenarios, but found that approving additional LNG exports beyond what’s already in the pipeline would likely produce at least a small increase in emissions by 2050 in all of them. The report also found that demand from U.S. allies in Europe and elsewhere would be met by projects that have already been approved, making additional plants “neither sustainable nor advisable,” as Secretary of Energy Jennifer Granholm wrote.
The natural gas industry and its supporters were quick to question the results, and they’re about to have a much more sympathetic ear in the Trump administration. But the report gives activists a considerable weapon to use in future lawsuits if Trump tries to put LNG approvals on the fast track.
I checked my phone after dinner one evening in August to find the members of climate X (formerly known as climate Twitter) suddenly at each other's throats over a provocative essay published in Jacobin titled “Obsessing Over Climate Disinformation Is a Wrong Turn.” Written by the environmental sociologist Holly Buck, the essay argues that too much focus on the oil and gas industry’s disinformation campaigns risks dismissing or overlooking legitimate concerns people have about the energy transition. “Fighting disinformation becomes a cheap hack for the hard work of listening to people and learning from them,” wrote Buck. “We have to put resources into a different sort of public engagement with climate change, one that sees publics as competent and nuanced rather than as susceptible marks for memes.”
The message struck a nerve. While many praised the essay, a number of prominent climate activists and journalists with large online followings attacked it, defending the urgency of combating disinformation and accusing Buck of setting up a false dichotomy between this work and public engagement. Aaron Regunberg, a former Rhode Island state representative and lawyer for the nonprofit Public Citizen, wrote a response in Jacobin charging Buck with “arguing with a straw man” and not understanding how insidious the oil industry’s disinformation strategies are.
Buck tried to clarify her view in a followup piece, asserting that she was not denying that disinformation was a “serious obstacle to climate action,” but rather that the act of “fighting disinformation” won’t solve what she sees as underlying problems working against the energy transition: the absence of an engagement apparatus that helps regular people understand their options, and a media ecosystem that “profits from our hate and division.”
What’s clear moving forward is that with a clean energy opponent entering the White House and a mega-billionaire who, with X, literally owns a chunk of the media ecosystem standing by his side, both disinformation and the framework that supports it will stay in the spotlight.
After remaining basically flat for two decades, U.S. electricity demand is set to grow by an average of 3% per year over the next five years, according to the latest forecast from the energy policy consulting firm Grid Strategies. Domestic manufacturing will drive some of the demand, it predicts, but the majority will come from the buildout of data centers, “supercharged” by the rise of artificial intelligence.
On one hand, many of the companies building data centers have ambitious clean energy goals. Google, Amazon, Microsoft, and others have signed landmark deals with advanced nuclear and geothermal power companies, helping to get first-of-a-kind deployments of these technologies financed. If those projects are successful, they could pave the way for cheaper, cleaner, 24/7 power for the rest of us.
But energy-hungry AI is already causing those tech giants to fall behind on their targets and driving major investments in fossil fuel infrastructure. My colleague Matthew Zeitlin has chronicled how electricity demand growth is making it harder to close natural gas and coal plants . In the states that data centers are flocking to, such as Virginia, North Carolina, and Texas, utilities are revising their integrated resource plans to increase the amount of natural gas generation they expect to deliver. Exxon and Chevron are gearing up to build natural gas generation “behind the meter,” i.e. serving data centers directly, so they can meet demand more quickly than if they had to hook up to the grid. The gas pipeline company Williams is also planning a Southeast expansion to serve data center demand. Energy equipment manufacturer GE Vernova is seeing orders for natural gas turbines skyrocket.
There are layers to this debate. Should policymakers require hyperscalers to bring online new sources of clean energy to power their data centers, or will that prove counterproductive and “dampen investment in new industries” — a trade-off familiar to anyone following the back-and-forth over clean hydrogen? And is it possible that all the fuss about data center demand is overblown? Is there even a business case for AI that supports this buildout?
The incoming Trump administration has promised to “unleash U.S. energy dominance” and “make America the AI capital of the world,” so it’s likely this will continue to be one of the top questions for climate hawks for the foreseeable future.
The debate over the state of electric vehicle sales didn’t start in 2024, but headlines this year continued to sow confusion over whether or not EVs are catching on in the way climate advocates — and carmakers — hoped.
Each of the big three automakers, as well as most of the remaining companies serving North America, revised down their EV production plans this year, citing a waning market. In July, General Motors CEO Mary Barra said the company wasn’t going to hit its goal of producing a million EVs per year in North America by 2025. “We’re seeing a little bit of a slowdown here,” she said on CNBC. “The market just isn’t developing. But we will get there.” Ford cancelled plans to produce an electric three-row SUV, delayed its release of an electric medium-sized pickup truck until 2027, and paused production of the F-150 Lightning, and has decided to shift its near-term focus to selling hybrids.
Among non-U.S. automakers, Stellantis delayed the release of a new EV Ram pickup truck and will put out a hybrid version instead. Volkswagen delayed the North America release of an electric sedan. Several luxury automakers, including Aston Martin and Bentley, delayed the release of their first EVs until 2027. Mercedes-Benz once strived to have EVs make up 50% of its sales in 2025 — now it’s trying to hit that mark in 2030. Tesla sales also slowed significantly in the first half of the year. CEO Elon Musk cancelled plans to build a new low-cost EV.
But while sales numbers may not have met individual automakers’ expectations, overall sales continued to grow. “For every sign of an EV slowdown, another suggests an adolescent industry on the verge of its next growth spurt,” Bloomberg reported mid-way through the year. During the third quarter, GM saw record EV sales. Honda’s debut EV, the Prologue, jumped up the charts to become one of the top-selling offerings on the market. After looking at third quarter numbers, Cox Automotive analysts opined that “a 10% [market] share is well within reach.”
We’ll have to see how Trump’s plans to eliminate consumer subsidies for EVs changes that outlook, but expect there to be plenty more fodder for debate.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
The administration seems to be pursuing a “some of the above” strategy with little to no internal logic.
The Department of Energy justified terminating hundreds of congressionally-mandated grants issued by the Biden administration for clean energy projects last week (including for a backup battery at a children’s hospital) by arguing that they were bad investments for the American people.
“Following a thorough, individualized financial review, DOE determined that these projects did not adequately advance the nation’s energy needs, were not economically viable, and would not provide a positive return on investment of taxpayer dollars,” the agency’s press release said.
It’s puzzling, then, that the Trump administration is pouring vast government resources into saving aging coal plants and expediting advanced nuclear projects — two sources of energy that are famously financial black holes.
The Energy Department announced it would invest $625 million to “reinvigorate and expand America’s coal industry” in late September. Earlier this year, the agency also made $900 million available to “unlock commercial deployment of American-made small modular reactors.”
It’s hard to imagine what economic yardsticks would warrant funding to keep coal plants open. The cost of operating a coal plant in the U.S. has increased by nearly 30% since 2021 — faster than inflation — according to research by Energy Innovation. Driving that increase is the cost of coal itself, as well as the fact that the nation’s coal plants are simply getting very old and more expensive to maintain. “You can put all the money you want into a clunker, but at the end of the day, it’s really old, and it’s just going to keep getting more expensive over time, even if you have a short term fix,” Michelle Solomon, a program manager at Energy Innovation who authored the research, told me.
Keeping these plants online — even if they only operate some of the time— inevitably raises electricity bills. That’s because in many of the country’s electricity markets, the cost of power on any given day is determined by the most expensive plant running. On a hot summer day when everyone’s air conditioners are working hard and the grid operator has to tell a coal plant to switch on to meet demand, every electron delivered in the region will suddenly cost the same as coal, even if it was generated essentially for free by the sun or wind.
The Trump administration has also based its support for coal plants on the idea that they are needed for reliability. In theory, coal generation should be available around the clock. But in reality, the plants aren’t necessarily up to the task — and not just because they’re old. Sandy Creek in Texas, which began operating in 2013 and is the newest coal plant in the country, experienced a major failure this past April and is now expected to stay offline until 2027, according to the region’s grid operator. In a report last year, the North American Electric Reliability Corporation warned that outage rates for coal plants are increasing. This is in part due to wear and tear from the way these plants cycle on and off to accommodate renewable energy sources, the report said, but it’s also due to reduced maintenance as plant operators plan to retire the facilities.
“You can do the deferred maintenance. It might keep the plant operating for a bit longer, but at the end of the day, it’s still not going to be the most efficient source of energy, or the cheapest source of energy,” Solomon said.
The contradictions snowball from there. On September 30, the DOE opened a $525 million funding opportunity for coal plants titled “Restoring Reliability: Coal Recommissioning and Modernization,” inviting coal-fired power plants that are scheduled for retirement before 2032 or in rural areas to apply for grants that will help keep them open. The grant paperwork states that grid capacity challenges “are especially acute in regions with constrained transmission and sustained load growth.” Two days later, however, as part of the agency’s mass termination of grants, it canceled more than $1.3 billion in awards from the Grid Deployment Office to upgrade and install new transmission lines to ease those constraints.
The new funding opportunity may ultimately just shuffle awards around from one coal plant to another, or put previously-awarded projects through the time-and-money-intensive process of reapplying for the same funding under a new name. Up to $350 million of the total will go to as many as five coal plants, with initial funding to restart closed plants or to modernize old ones, and later phases designated for carbon capture, utilization, and storage retrofits. The agency said it will use “unobligated” money from three programs that were part of the 2021 Infrastructure Investment and Jobs Act: the Carbon Capture Demonstration Projects Program, the Carbon Capture Large-Scale Pilot Projects, and the Energy Improvements in Rural or Remote Areas Program.
In a seeming act of cognitive dissonance, however, the agency has canceled awards for two coal-fired power plants that the Biden administration made under those same programs. One, a $6.5 million grant to Navajo Transitional Energy Company, a tribal-owned entity that owns a stake in New Mexico’s Four Corners Generating Station, would have funded a study to determine whether adding carbon capture and storage to the plant was economically viable. The other, a $50 million grant to TDA Research that would have helped the company validate its CCS technology at Dry Fork Station, a coal plant in Wyoming, was terminated in May.
Two more may be out the window. A new internal agency list of grants labeled “terminate” that circulated this week included an $8 million grant for the utility Duke Energy to evaluate the feasibility of capturing carbon from its Edwardsport plant in Indiana, and $350 million for Project Tundra, a carbon capture demonstration project at the Milton R. Young Station in North Dakota.
“It’s not internally consistent,” Jack Andreason Cavanaugh, a global fellow at the Columbia University’s Carbon Management Research Initiative, told me. “You’re canceling coal grants, but then you’re giving $630 million to keep them open. You’re also investing a ton of time and money into nuclear — which is great, to be clear — but these small modular reactors haven’t been deployed in the United States, and part of the reason is that they’re currently not economically viable.”
The closest any company has come thus far to deploying a small modular reactor in the U.S. is NuScale, a company that planned to build its first-of-a-kind reactors in Idaho and had secured agreements to sell the power to a group of public utilities in Utah. But between 2015, when it was first proposed, and late 2023, when it died, the project’s budget tripled from $3 billion to more than $9 billion, while its scale was reduced from 600 megawatts to 462 megawatts. Not all of that was inevitable — costs rose dramatically in the final few years due to inflation. The reason NuScale ultimately pulled out of the project is that the cost of electricity it generated was going to be too high for the market to bear.
It’s unclear how heavily the DOE will weigh project financials in the application process for the $900 million for nuclear reactors. In its funding announcement, it specified that the awards would be made “solely based on technical merit.” The agency’s official solicitation paperwork, however, names “financial viability” as one of the key review criteria. Regardless, the Trump administration appears to recognize the value in funding first-of-a-kind, risky technologies when it comes to nuclear, but is not applying the same standards to direct air capture or hydrogen plants.
I asked the Department of Energy to share the criteria it used in the project review process to determine economic viability. In response, spokesperson Ben Dietderich encouraged me to read Wright’s memorandum describing the review process from May. The memo outlines what types of documentation the agency will evaluate to reach a decision, but not the criteria for making that decision.
Solomon agreed that advanced nuclear might one day meet the grid’s growing power needs, but not anytime soon. “Hopefully in the long term, this technology does become a part of our electricity system. But certainly relying on it in the short term has real risks to electricity costs,” she said. “And also reliability, in the sense that the projects might not materialize.”
The collateral damage from the Lava Ridge wind project might now include a proposed 285-mile transmission line initially approved by federal regulators in the 1990s.
The same movement that got Trump to kill the Lava Ridge wind farm Trump killed has appeared to derail a longstanding transmission project that’s supposed to connect sought-after areas for wind energy in Idaho to power-hungry places out West.
The Southwest Intertie Project-North, also known as SWIP-N, is a proposed 285-mile transmission line initially approved by federal regulators in the 1990s. If built, SWIP-N is supposed to feed power from the wind-swept plains of southern Idaho to the Southwest, while shooting electrons – at least some generated from solar power – back up north into Idaho from Nevada, Utah, and Arizona. In California, regulators have identified the line as crucial for getting cleaner wind energy into the state’s grid to meet climate goals.
But on Tuesday, SWIP-N suddenly faced a major setback: The three-person commission representing Jerome County, Idaho – directly in the path of the project – voted to revoke its special use permit, stating the company still lacked proper documentation to meet the terms and conditions of the approval. SWIP-N had the wind at its back as recently as last year, when LS Power expected it to connect to Lava Ridge and other wind farms that have been delayed by Trump’s federal permitting freeze on renewable energy. But now, the transmission line has stuttered along with this potential generation.
At a hearing Tuesday evening, county commissioners said Great Basin Transmission, a subsidiary of LS Power developing the line, would now suddenly need new input, including the blessing of the local highway district and potential feedback from the Federal Aviation Administration. Jerome County Commissioner Charles Howell explained to me Wednesday afternoon that there will still need to be formal steps remanding the permit, and the process will go back to local zoning officials. Great Basin Transmission will then at minimum need to get the sign-offs from local highway officials to satisfy his concerns, as well as those of the other commissioner who voted to rescind the permit, Ben Crouch.
The permit was many years old, and there are outstanding questions about what will happen next procedurally, including what Great Basin Transmission is actually able to do to fight this choice by the commissioners. At minimum, staff for the commission will write a formal decision explaining the reasoning and remand the permit. After that, it’ll be up to Great Basin Transmission to produce the documents that commissioners want. “Even our attorney and staff didn’t have those answers when we asked that after the vote,” Howell said, adding that he hopes the issues can be resolved. “I was on the county commission about when they decided where to site the towers, where to site the right-of-ways. That’s all been there a long time.”
This is the part where I bring up how Jerome County’s decision followed a months-long fight by aggrieved residents who opposed the SWIP-N line, including homeowners who say they didn’t know their properties were in the path of the project. There’s also a significant anti-wind undercurrent, as many who are fighting this transmission line previously fought LS Power’s Lava Ridge wind project, which was blocked by and executive order from President Donald Trump on his first day in office. Jerome County itself passed an ordinance in May requiring any renewable energy facility to get all federal, state, and local approvals before it would sign off on new projects.
Opposition to SWIP-N comes from a similar place as the “Stop Lava Ridge” campaign. Along with viewshed anxieties and property value impacts, SWIP-N, like Lava Ridge, would be within single-digit miles of the Minidoka National Historic Site, a former prison camp that held Japanese-Americans during World War II. In the eyes of its staunchest critics, constructing the wind farm would’ve completely damaged any impact of visiting the site by filling the surroundings of what is otherwise a serene, somber scene. Descendants of Minidoka detainees lobbied politicians at all levels to oppose Lava Ridge, a cause that was ultimately championed by Republican politicians in their fight against the project.
These same descendants of Japanese-American detainees have fought the transmission line, arguing that its construction would inevitably lead to new wind projects. “If approved, the SWIP-N line would enable LS Power and other renewable energy companies to build massive wind projects on federal land in and around Jerome County in future years,” wrote Dan Sakura, the son of a Minidoka prisoner, in a September 15 letter to the commission.
Sakura had been a leading voice in the fight against Lava Ridge. When I asked why he was weighing in on SWIP-N, he told me over text message, “The Lava Ridge wind project poisoned the well for renewable energy projects on federal land in Southern Idaho.”
LS Power did not respond to a request for comment.
It’s worth noting that efforts have already been made to avoid SWIP-N’s impacts to the Minidoka National Historic Site. In 2010, Congress required the Interior Secretary to re-do the review process for the transmission line, which at the time was proposed to go through the historic site. The route rejected by Jerome County would go around.
There is also no guarantee that wind energy will flock to southern Idaho any time soon. Yes, there’s a Trump permitting freeze, and federal wind energy tax credits are winding down. That’s almost certainly why the developers of small nuclear reactors have reportedly coveted the Lava Ridge site for future projects. But there’s also incredible hostility pent up against wind partially driven by the now-defunct LS Power project, for instance in Lincoln County, where officials now have an emergency moratorium banning wind energy while they develop a more permanent restrictive ordinance.
Howell made no bones about his own views on wind farms, telling me he prefers battery storage and nuclear power. “As I stand here in my backyard, if they put up windmills, that’s all I’m going to see for 40 miles,” he said
But Howell did confess to me that he thinks SWIP-N will ultimately be built – if the company is able to get these new sign-offs. What kind of energy flows through a transmission line cannot ultimately affect the decision on the special use permit because, he said, “there are rules.” On top of that, Idaho is going to ultimately need more power no matter what, and at the very least, the state will have to get electrons from elsewhere.
Howell’s “non-political” answer to the fate of SWIP-N, as he put it to me, is that “We live on power, so we gotta have more power.”
The week’s most important news around renewable project fights.
1. Western Nevada — The Esmeralda 7 solar mega-project may be no more.
2. Washoe County, Nevada – Elsewhere in Nevada, the Greenlink North transmission line has been delayed by at least another month.
3. Oconto County, Wisconsin – Solar farm town halls are now sometimes getting too scary for developers to show up at.
4. Apache County, Arizona – In brighter news, this county looks like it will give its first-ever conditional use permit for a large solar farm, EDF Renewables’ Juniper Spring project.
5. Putnam County, Indiana – After hearing about what happened here this week, I’m fearful for any solar developer trying to work in Indiana.
6. Tippecanoe County, Indiana – Two counties to the north of Putnam is a test case for the impacts a backlash on solar energy can have on data centers.