You’re out of free articles.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
Climate advocates have never met a solution they couldn’t argue about.
The end of 2024 marks the end of four of the busiest years the climate and clean energy community has seen to date. I think it's safe to say the energy transition is in full swing (despite certain opinions to the contrary), even if it's not yet on a glide path to a future that would avoid devastating climate impacts.
But with progress comes a new kind of conflict: infighting. Which climate solutions are the best climate solutions? How can we implement them the right way? When should other priorities, like affordability and national security, come first, if they should at all? Are those trade-offs even real? Or are they fossil fuel propaganda?
In a fantastic piece for Heatmap last year, researcher Joshua Lappen drew attention to this increasingly combative undercurrent in the climate coalition, inflamed by the debate over whether a compromise on permitting reform would be better for the climate in the long run than no reform at all. That fight — along with the related question of whether conservationists are slowing climate action — continued into 2024. But it wasn’t the only thing climate advocates fought about. Here are four debates that dominated the discourse this year that I think will continue into 2025.
Biden ignited a firestorm of controversy in January when he paused approvals of new liquefied natural gas export terminals until the Department of Energy could re-evaluate LNG’s potential economic and environmental impacts. The move followed protests from environmental groups that had named these facilities their number one climate bogeyman, arguing that new terminals would, as Bill McKibben put it, “install our reliance on fossil fuels for decades to come.”
What followed was much back and forth about whether growing U.S. LNG exports would help or hurt efforts to stop climate change. To be sure, producing and burning natural gas releases planet-warming emissions. But past government and academic studies have found that exporting U.S. natural gas could result in lower global emissions overall by helping other countries replace dirtier fuels such as coal or natural gas from Russia, where the industry has much higher methane emissions. Environmentalists pushed back on that narrative, citing a study by Robert Howarth, a Cornell scientist, which found that producing and transporting LNG could be worse for the climate than coal. Critics then pounced on Howarth's study, accusing him of using flawed assumptions about upstream methane emissions, LNG tanker size, and shipping route distances.
Ultimately, calculating the emissions impact of increased LNG exports requires making a lot of assumptions. How can we know, for example, whether creating a cheap supply of natural gas will displace coal or deter adoption of renewables? As Arvind Ravikumar, an expert in energy emissions modeling, told my colleague Matthew Zeitlin, “There’s no right answer. It depends on who buys, what time frame, which country, and how are they using LNG.”
A week before Christmas, the Biden administration finally put out its long-awaited study. It modeled a number of different scenarios, but found that approving additional LNG exports beyond what’s already in the pipeline would likely produce at least a small increase in emissions by 2050 in all of them. The report also found that demand from U.S. allies in Europe and elsewhere would be met by projects that have already been approved, making additional plants “neither sustainable nor advisable,” as Secretary of Energy Jennifer Granholm wrote.
The natural gas industry and its supporters were quick to question the results, and they’re about to have a much more sympathetic ear in the Trump administration. But the report gives activists a considerable weapon to use in future lawsuits if Trump tries to put LNG approvals on the fast track.
I checked my phone after dinner one evening in August to find the members of climate X (formerly known as climate Twitter) suddenly at each other's throats over a provocative essay published in Jacobin titled “Obsessing Over Climate Disinformation Is a Wrong Turn.” Written by the environmental sociologist Holly Buck, the essay argues that too much focus on the oil and gas industry’s disinformation campaigns risks dismissing or overlooking legitimate concerns people have about the energy transition. “Fighting disinformation becomes a cheap hack for the hard work of listening to people and learning from them,” wrote Buck. “We have to put resources into a different sort of public engagement with climate change, one that sees publics as competent and nuanced rather than as susceptible marks for memes.”
The message struck a nerve. While many praised the essay, a number of prominent climate activists and journalists with large online followings attacked it, defending the urgency of combating disinformation and accusing Buck of setting up a false dichotomy between this work and public engagement. Aaron Regunberg, a former Rhode Island state representative and lawyer for the nonprofit Public Citizen, wrote a response in Jacobin charging Buck with “arguing with a straw man” and not understanding how insidious the oil industry’s disinformation strategies are.
Buck tried to clarify her view in a followup piece, asserting that she was not denying that disinformation was a “serious obstacle to climate action,” but rather that the act of “fighting disinformation” won’t solve what she sees as underlying problems working against the energy transition: the absence of an engagement apparatus that helps regular people understand their options, and a media ecosystem that “profits from our hate and division.”
What’s clear moving forward is that with a clean energy opponent entering the White House and a mega-billionaire who, with X, literally owns a chunk of the media ecosystem standing by his side, both disinformation and the framework that supports it will stay in the spotlight.
After remaining basically flat for two decades, U.S. electricity demand is set to grow by an average of 3% per year over the next five years, according to the latest forecast from the energy policy consulting firm Grid Strategies. Domestic manufacturing will drive some of the demand, it predicts, but the majority will come from the buildout of data centers, “supercharged” by the rise of artificial intelligence.
On one hand, many of the companies building data centers have ambitious clean energy goals. Google, Amazon, Microsoft, and others have signed landmark deals with advanced nuclear and geothermal power companies, helping to get first-of-a-kind deployments of these technologies financed. If those projects are successful, they could pave the way for cheaper, cleaner, 24/7 power for the rest of us.
But energy-hungry AI is already causing those tech giants to fall behind on their targets and driving major investments in fossil fuel infrastructure. My colleague Matthew Zeitlin has chronicled how electricity demand growth is making it harder to close natural gas and coal plants . In the states that data centers are flocking to, such as Virginia, North Carolina, and Texas, utilities are revising their integrated resource plans to increase the amount of natural gas generation they expect to deliver. Exxon and Chevron are gearing up to build natural gas generation “behind the meter,” i.e. serving data centers directly, so they can meet demand more quickly than if they had to hook up to the grid. The gas pipeline company Williams is also planning a Southeast expansion to serve data center demand. Energy equipment manufacturer GE Vernova is seeing orders for natural gas turbines skyrocket.
There are layers to this debate. Should policymakers require hyperscalers to bring online new sources of clean energy to power their data centers, or will that prove counterproductive and “dampen investment in new industries” — a trade-off familiar to anyone following the back-and-forth over clean hydrogen? And is it possible that all the fuss about data center demand is overblown? Is there even a business case for AI that supports this buildout?
The incoming Trump administration has promised to “unleash U.S. energy dominance” and “make America the AI capital of the world,” so it’s likely this will continue to be one of the top questions for climate hawks for the foreseeable future.
The debate over the state of electric vehicle sales didn’t start in 2024, but headlines this year continued to sow confusion over whether or not EVs are catching on in the way climate advocates — and carmakers — hoped.
Each of the big three automakers, as well as most of the remaining companies serving North America, revised down their EV production plans this year, citing a waning market. In July, General Motors CEO Mary Barra said the company wasn’t going to hit its goal of producing a million EVs per year in North America by 2025. “We’re seeing a little bit of a slowdown here,” she said on CNBC. “The market just isn’t developing. But we will get there.” Ford cancelled plans to produce an electric three-row SUV, delayed its release of an electric medium-sized pickup truck until 2027, and paused production of the F-150 Lightning, and has decided to shift its near-term focus to selling hybrids.
Among non-U.S. automakers, Stellantis delayed the release of a new EV Ram pickup truck and will put out a hybrid version instead. Volkswagen delayed the North America release of an electric sedan. Several luxury automakers, including Aston Martin and Bentley, delayed the release of their first EVs until 2027. Mercedes-Benz once strived to have EVs make up 50% of its sales in 2025 — now it’s trying to hit that mark in 2030. Tesla sales also slowed significantly in the first half of the year. CEO Elon Musk cancelled plans to build a new low-cost EV.
But while sales numbers may not have met individual automakers’ expectations, overall sales continued to grow. “For every sign of an EV slowdown, another suggests an adolescent industry on the verge of its next growth spurt,” Bloomberg reported mid-way through the year. During the third quarter, GM saw record EV sales. Honda’s debut EV, the Prologue, jumped up the charts to become one of the top-selling offerings on the market. After looking at third quarter numbers, Cox Automotive analysts opined that “a 10% [market] share is well within reach.”
We’ll have to see how Trump’s plans to eliminate consumer subsidies for EVs changes that outlook, but expect there to be plenty more fodder for debate.
Log in
To continue reading, log in to your account.
Create a Free Account
To unlock more free articles, please create a free account.
On Trump’s latest wind target, new critical minerals, and methane maps
Current conditions: In the Atlantic, Tropical Storm Fernand is heading northward toward Bermuda • In the Pacific, Tropic Storm Juliette is active about 520 miles southwest of Baja California, with winds of up to 65 miles per hour • Temperatures are surging past 100 degrees Fahrenheit in South Korea.
Renewable investments dim in the U.S.Brandon Bell/Getty Images
In the United States, investments in renewable energy fell by 36% — equal to $20.5 billion — compared to the second half of last year, according to new data from the consultancy BloombergNEF. The drop “reflects a rush of construction toward the end of last year as developers sought to lock in lucrative tax credits, followed by a sharp drop this year as policy conditions worsened,” the report stated. The European Union, on the other hand, ratcheted up spending on renewables by 63% — or nearly $30 billion — in the first half of this year compared to the second half of 2024. Drawing an even sharper contrast, investments into both onshore and offshore wind made up the bulk of the growth in Europe as the Trump administration has placed the harshest restrictions on wind turbines of any other energy source.
Overall, global investment into clean energy rose 10% in the first half of 2025 compared to the same period in 2024. That included a worldwide increase in wind investments of 24% and a jump in new solar investment of 5%.
The U.S. Geological Survey released its latest list of critical minerals on Monday. The report highlights some shifts in U.S. production and concerns in Washington over potential supply disruptions from supposedly friendly powers. While the analysis identifies China as the biggest threat to the U.S. economy in 46 of the 84 commodities studied, “Canada and South Africa both show up as potential points of disruption across eight imports,” Farrell Gregory, a non-resident fellow at the Foundation for American Innovation, wrote on X. “Interestingly, Canada is identified as having a high-risk for disruption, more than South Africa and Russia.”
There were new bright spots in the report. The USGS removed tellurium, a silvery brittle metal used in semiconductors, from the list of risk resources it was added to in 2022. That’s because a new Rio Tinto mine transformed the U.S. from an importer into a net exporter in recent years.
It could have been worse. The Treasury guidance issued Friday dictating what wind and solar projects will be eligible for federal tax credits could have effectively banned developers from tapping the write-offs set to start phasing out next July. In the weeks before the Internal Revenue Service released its rules, GOP lawmakers from states with thriving wind and solar industries, including Senators John Curtis of Utah and Chuck Grassley of Iowa, publicly lobbied for laxer rules as part of what they pitched as the all-of-the-above “energy dominance” strategy on which Trump campaigned. Grassley went so far as to block two of Trump’s Treasury nominees “until I can be certain that such rules and regulations adhere to the law and congressional intent,” as Heatmap’s Matthew Zeitlin covered earlier in August.
Since the guidance came out on Friday, both Grassley and Curtis have put out positive statements backing the plan. “I appreciate the work of Secretary [Scott] Bessent and his staff in balancing various concerns and perspectives to address the President’s executive order on wind and solar projects,” Curtis said, according to E&E News. Calling renewables “an essential part of the ‘all of the above’ energy equation,” Grassley’s statement said the guidance “seems to offer a viable path forward for the wind and solar industries to continue to meet increased energy demand” and “reflects some of the concerns Congress and industry leaders have raised.”
Gas power plants are booming in the U.S. as demand surges, but the growth doesn’t yet mark a fundamental shift away from renewables, clean-energy analyst Michael Thomas wrote in a post on his Substack newsletter, Distilled. “If there were to be an unprecedented pivot to gas, you’d expect Texas to be ground zero for it,” he said. “The state has done everything it can to prop up fossil fuel power in recent years. It’s also one of the most permissive when it comes to environmental regulations and permitting.” Despite major growth in the past year, he wrote, gas made up just 10% of proposed new project capacity in Texas so far this year. The remaining 90% of capacity came from solar, wind, and battery projects. Last year alone, renewable and storage developers proposed 100 gigawatts of clean capacity — seven times more than gas developers proposed.
A new map allowing users to track risks from natural gas super-emitters launched Tuesday from the independent energy science and policy institute PSE Healthy Energy. The Methane Risk Map is a web tool with clickable markers representing individual methane super-emitting events throughout the U.S. Selecting one, as Heatmap’s Emily Pontecorvo wrote, “opens up a heatmap and information panel that shows the concentration of benzene, methane, and other pollutants present in that particular plume, the modeled distance each one traveled during the event, the demographics of the population exposed, and whether there were any sensitive facilities, such as schools or hospitals, in the exposure pathway.”
Though methane, the primary component of natural gas, is an extremely potent greenhouse gas and can pose an explosive risk at high concentrations, other components in unrefined natural gas present more direct public health risks. These include carcinogens like benzene and other health-harming substances, including toluene.
The grid-tech startup Splight has raised nearly $13 million to fund the commercial scaling of its breakthrough software. Unlike dynamic line rating, which uses weather and temperature data to open up more space on existing power lines to funnel as much as 30% more electricity, Splight claims its "dynamic congestion management” software can double the amount of room for electrons to flow without building new grid infrastructure.
The Methane Risk Map combines satellite and geologic data to visualize chemical exposure from natural gas plumes.
Methane-sniffing satellites have brought unprecedented visibility to “super-emitter” events, when the planet-warming gas gushes into the atmosphere at alarming rates — often from leaky fossil fuel infrastructure.
But those plumes contain more than just methane. Scientists are now using satellite data to look beyond the climate risks and assess the danger of super-emitting wells, tanks, and other assets to nearby communities.
PSE Healthy Energy, an independent energy science and policy institute, unveiled a “Methane Risk Map” on Tuesday that illustrates the spread of health-harming pollutants like benzene and toluene that also emanate from methane super-emitter events.
“The Methane Risk Map translates methane as a climate problem into methane as an air quality and human health issue,” Seth Shonkoff, PSE’s executive director, said during a briefing last week.
The vast majority of what we call “natural gas” is methane, but when it comes out of the ground, it also contains a host of other compounds, including carcinogens. The exact mix varies by location, and also changes as it moves through the oil and gas supply chain.
The Methane Risk Map is a web tool with clickable markers representing individual methane super-emitter events throughout the U.S. Selecting one opens up a heatmap and information panel that shows the concentration of benzene, methane, and other pollutants present in that particular plume, the modeled distance each one traveled during the event, the demographics of the population exposed, and whether there were any sensitive facilities, such as schools or hospitals, in the exposure pathway. It also gives the date the emission event occurred and what kind of equipment it came from, if available, such as a well or a tank.
Courtesy of PSE Healthy Energy
Underlying the map are two relatively new scientific developments. The first, as mentioned earlier, is satellite data. PSE pulls data released by the nonprofit Carbon Mapper, which launched its premiere satellite a year ago. Carbon Mapper’s sensing tools, developed in collaboration with NASA, essentially point a telephoto lens at oil or gas facilities to detect methane super-emitter events and measure how much of the gas is streaming out.
The problem, however, is that the satellite can only detect methane.
To solve that problem, PSE researchers created a database of the composition of natural gas at more than 4,000 facilities, spanning 19 oil- and gas-producing basins. When oil and gas operators apply for air permits, they have to submit facility-specific gas composition data from laboratory reports, often derived from direct samples of the gas. Researchers from PSE Healthy Energy went through thousands of regulatory documents to compile a database based on these reports. They found hazardous pollutants in more than 99% of the samples.
To build the Methane Risk Map, PSE combined methane emission rates from Carbon Mapper with this site-specific gas composition data, then used an air dispersion model to estimate the peak concentrations of each pollutant in the surrounding area after the release and show the area at risk. The map includes risk benchmarks set by state regulators for each pollutant, and shows that hazardous air pollutant levels from these super-emitters often exceed them.
While methane itself isn’t toxic, it can pose a safety risk at high enough concentrations from explosions or fires. So in addition to information about traditional air pollutants, users can also view the extent to which the methane released by an event posed a threat to the surrounding area.
One of the shortcomings of the project, and of methane-mapping efforts in general, is that the data isn’t accessible in real time. Carbon Mapper takes roughly a month from when its satellite spots a super-emitter to process and release the emissions data publicly — then PSE will have to run its own models and update its map. The satellites also represent only a moment in time — they don’t tell you when a leak started or how long it lasted. While the time delay could improve with technological and other advances, fixing the latter would require a lot more satellites.
The Methane Risk Map can’t yet function as an emergency response tool in a public health context, but that also wasn’t quite the intent behind the project. The PSE researchers envision policymakers, regulators, lawyers, and communities using the tool to push for stronger regulations, such as safer setback distances, stricter air quality monitoring requirements, and leak detection and repair rules.
The Environmental Protection Agency finalized stronger rules regulating methane and air pollution from the oil and gas sector in 2023, under the Biden administration. But after Trump took over the federal apparatus, the agency said it was “reconsidering” those rules. Since then, the EPA has extended compliance deadlines for many of the rules.
“As regulatory rollbacks in the climate and air quality arenas occur in the coming months, having this type of defensible data on the risk of these events and the risks they pose to human health will become increasingly important,” Kelsey Bilsback, the principal investigator for the project, said during the briefing.
Right now the map only includes emissions from the “upstream” oil and gas sector, but PSE plans to expand the project to include leaks from the midstream and downstream, too, such as pipelines and end-users.
Analysts are betting that the stop work order won’t last. But the risks for the developer could be more serious.
The Danish offshore wind company Orsted was already in trouble. It was looking to raise about half of its market value in new cash because it couldn’t sell stakes in its existing projects. The market hated that idea, and the stock plunged almost 30% following the announcement of the offering. That was two weeks ago.
The stock has now plunged again by 16% to a record low on Monday. That follows the announcement late Friday night that the Department of the Interior had issued a stop work order for the company’s Revolution Wind project, off the coasts of Rhode Island and Connecticut. This would allow regulators “to address concerns related to the protection of national security interests of the United States,” the DOI’s letter said. The project is already 80% complete, according to the company, and was due to be finished and operating by next year.
While Donald Trump’s antipathy towards the wind industry — and especially the offshore wind industry — is no secret, analysts were not convinced the order would be a death blow to project, let alone Orsted. But it’s still quite bad news.
“This is another setback for Orsted, and the U.S. offshore wind industry,” Jefferies analyst Ahmed Farman wrote in a note to clients on Sunday. “The question now is whether a deal can be struck to restart the project like Empire Wind,” the New York offshore wind farm that received a similar stop work order in April, only to have it lifted in May.
Morningstar analyst Tancrede Fulop tacked in the same direction on Monday. “We expect the order to be lifted, as was the case for Equinor’s Empire Wind project off the coast of New York last May,” he wrote in a note to clients, adding an intriguing post-script: “The Empire Wind case suggests President Donald Trump’s administration uses stop-work orders to exert pressure on East Coast Democratic governors regarding specific issues.”
When the federal government lifted its stop work order on Empire Wind, Secretary of the Interior Doug Burgum wrote on X that he was “encouraged by Governor Hochul’s comments about her willingness to move forward on critical pipeline capacity,” likely referring to two formerly moribund pipeline proposals meant to carry shale gas from Pennsylvania into the Northeast. Hochul herself denied there was any quid pro quo between the project restarting and any pipeline developments. Meanwhile, the White House said days later that Hochul had “caved.”
The natural question becomes, then, what can the governors of Rhode Island and Connecticut offer Trump? At least so far, the states’ Democratic governors have criticized the administration for issuing the stop work order and said they will “pursue every avenue to reverse the decision to halt work on Revolution Wind.”
Yet they have no obvious card to play, Allen Brooks, a former Wall Street analyst and a senior fellow at the National Center for Energy Analytics, told me. “They were not blocking pipelines the way the state of New York was, so there’s not much they can do,” he said.
Even if Interior does reverse the order, the risk of a catastrophic outcome for Orsted has certainly gone up. The company’s rights issue, where existing shareholders have an option to expand their stakes at a discount, is intended to raise 60 billion Danish kroner, or around $9 billion, with some 5 billion kroner, or $800 million, due to complete Revolution. Jefferies has estimated that Revolution, which Orsted owns half of, will ultimately cost the company $4 billion.
The administration’s active hostility toward wind development “calls into question that business model,” Brooks told me. “There’s going to be a lot of questions as to whether [offshore wind developers] are going to be able to raise money.”
The Danish government, which is the majority shareholder of Orsted, said soon after the announcement that it would participate in the fundraising. The company reaffirmed that patronage on Monday, saying that it has the “continued support and commitment to the rights issue from its majority shareholder.”
Orsted’s big drop will also drag down the fortunes of its neighbor Norway, via the latter’s majority state-owned wind power company Equinor, which bought a 10% stake in Orsted late last year.
“Their investment decision looks terrible,” Brooks told me.
At the close of trading in Europe, Orsted’s market capitalization stood at around $12 billion. That’s about a third less than where it sat before the share sale announcement.
In a worst case scenario involving the cancellation of both Revolution and Sunrise Wind, another troubled offshore project planned to serve customers in Massachusetts, Fulop predicts that the long-run value of Orsted would go down enough that it would have to offer its new shares at a greater discount — which would, of course, raise less money.
The best case scenario may be that Orsted will join its Scandinavian peer in resolving a hostage negotiation with the White House, with billions of dollars of investment and over 1,000 jobs in the balance.
“The Empire Wind case suggests President Donald Trump’s administration uses stop-work orders to exert pressure on East Coast Democratic governors regarding specific issues,” Fulop wrote. Right now, it’s workers, investors, elected officials, and New England ratepayers feeling the pressure.