Energy
Tariffs Are Dominating Clean Energy Earnings Calls
See also: federal policy, batteries, and electricity demand.
Sign In or Create an Account.
By continuing, you agree to the Terms of Service and acknowledge our Privacy Policy
Welcome to Heatmap
Thank you for registering with Heatmap. Climate change is one of the greatest challenges of our lives, a force reshaping our economy, our politics, and our culture. We hope to be your trusted, friendly, and insightful guide to that transformation. Please enjoy your free articles. You can check your profile here .
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Subscribe to get unlimited Access
Hey, you are out of free articles but you are only a few clicks away from full access. Subscribe below and take advantage of our introductory offer.
subscribe to get Unlimited access
Offer for a Heatmap News Unlimited Access subscription; please note that your subscription will renew automatically unless you cancel prior to renewal. Cancellation takes effect at the end of your current billing period. We will let you know in advance of any price changes. Taxes may apply. Offer terms are subject to change.
Create Your Account
Please Enter Your Password
Forgot your password?
Please enter the email address you use for your account so we can send you a link to reset your password:
See also: federal policy, batteries, and electricity demand.
Just about every other renewable energy company is taking a beating today.
A climate tech company powered by natural gas has always been an odd concept. Now as it moves into developing data centers, it insists it’s remaining true to its roots.
Three companies are joining forces to add at least a gigawatt of new generation by 2029. The question is whether they can actually do it.
Investors are betting on gas to meet the U.S.’s growing electricity demand. Turbine manufacturers, however, have other plans.
Climate advocates have never met a solution they couldn’t argue about.
The end of 2024 marks the end of four of the busiest years the climate and clean energy community has seen to date. I think it's safe to say the energy transition is in full swing (despite certain opinions to the contrary), even if it's not yet on a glide path to a future that would avoid devastating climate impacts.
But with progress comes a new kind of conflict: infighting. Which climate solutions are the best climate solutions? How can we implement them the right way? When should other priorities, like affordability and national security, come first, if they should at all? Are those trade-offs even real? Or are they fossil fuel propaganda?
In a fantastic piece for Heatmap last year, researcher Joshua Lappen drew attention to this increasingly combative undercurrent in the climate coalition, inflamed by the debate over whether a compromise on permitting reform would be better for the climate in the long run than no reform at all. That fight — along with the related question of whether conservationists are slowing climate action — continued into 2024. But it wasn’t the only thing climate advocates fought about. Here are four debates that dominated the discourse this year that I think will continue into 2025.
Biden ignited a firestorm of controversy in January when he paused approvals of new liquefied natural gas export terminals until the Department of Energy could re-evaluate LNG’s potential economic and environmental impacts. The move followed protests from environmental groups that had named these facilities their number one climate bogeyman, arguing that new terminals would, as Bill McKibben put it, “install our reliance on fossil fuels for decades to come.”
What followed was much back and forth about whether growing U.S. LNG exports would help or hurt efforts to stop climate change. To be sure, producing and burning natural gas releases planet-warming emissions. But past government and academic studies have found that exporting U.S. natural gas could result in lower global emissions overall by helping other countries replace dirtier fuels such as coal or natural gas from Russia, where the industry has much higher methane emissions. Environmentalists pushed back on that narrative, citing a study by Robert Howarth, a Cornell scientist, which found that producing and transporting LNG could be worse for the climate than coal. Critics then pounced on Howarth's study, accusing him of using flawed assumptions about upstream methane emissions, LNG tanker size, and shipping route distances.
Ultimately, calculating the emissions impact of increased LNG exports requires making a lot of assumptions. How can we know, for example, whether creating a cheap supply of natural gas will displace coal or deter adoption of renewables? As Arvind Ravikumar, an expert in energy emissions modeling, told my colleague Matthew Zeitlin, “There’s no right answer. It depends on who buys, what time frame, which country, and how are they using LNG.”
A week before Christmas, the Biden administration finally put out its long-awaited study. It modeled a number of different scenarios, but found that approving additional LNG exports beyond what’s already in the pipeline would likely produce at least a small increase in emissions by 2050 in all of them. The report also found that demand from U.S. allies in Europe and elsewhere would be met by projects that have already been approved, making additional plants “neither sustainable nor advisable,” as Secretary of Energy Jennifer Granholm wrote.
The natural gas industry and its supporters were quick to question the results, and they’re about to have a much more sympathetic ear in the Trump administration. But the report gives activists a considerable weapon to use in future lawsuits if Trump tries to put LNG approvals on the fast track.
I checked my phone after dinner one evening in August to find the members of climate X (formerly known as climate Twitter) suddenly at each other's throats over a provocative essay published in Jacobin titled “Obsessing Over Climate Disinformation Is a Wrong Turn.” Written by the environmental sociologist Holly Buck, the essay argues that too much focus on the oil and gas industry’s disinformation campaigns risks dismissing or overlooking legitimate concerns people have about the energy transition. “Fighting disinformation becomes a cheap hack for the hard work of listening to people and learning from them,” wrote Buck. “We have to put resources into a different sort of public engagement with climate change, one that sees publics as competent and nuanced rather than as susceptible marks for memes.”
The message struck a nerve. While many praised the essay, a number of prominent climate activists and journalists with large online followings attacked it, defending the urgency of combating disinformation and accusing Buck of setting up a false dichotomy between this work and public engagement. Aaron Regunberg, a former Rhode Island state representative and lawyer for the nonprofit Public Citizen, wrote a response in Jacobin charging Buck with “arguing with a straw man” and not understanding how insidious the oil industry’s disinformation strategies are.
Buck tried to clarify her view in a followup piece, asserting that she was not denying that disinformation was a “serious obstacle to climate action,” but rather that the act of “fighting disinformation” won’t solve what she sees as underlying problems working against the energy transition: the absence of an engagement apparatus that helps regular people understand their options, and a media ecosystem that “profits from our hate and division.”
What’s clear moving forward is that with a clean energy opponent entering the White House and a mega-billionaire who, with X, literally owns a chunk of the media ecosystem standing by his side, both disinformation and the framework that supports it will stay in the spotlight.
After remaining basically flat for two decades, U.S. electricity demand is set to grow by an average of 3% per year over the next five years, according to the latest forecast from the energy policy consulting firm Grid Strategies. Domestic manufacturing will drive some of the demand, it predicts, but the majority will come from the buildout of data centers, “supercharged” by the rise of artificial intelligence.
On one hand, many of the companies building data centers have ambitious clean energy goals. Google, Amazon, Microsoft, and others have signed landmark deals with advanced nuclear and geothermal power companies, helping to get first-of-a-kind deployments of these technologies financed. If those projects are successful, they could pave the way for cheaper, cleaner, 24/7 power for the rest of us.
But energy-hungry AI is already causing those tech giants to fall behind on their targets and driving major investments in fossil fuel infrastructure. My colleague Matthew Zeitlin has chronicled how electricity demand growth is making it harder to close natural gas and coal plants . In the states that data centers are flocking to, such as Virginia, North Carolina, and Texas, utilities are revising their integrated resource plans to increase the amount of natural gas generation they expect to deliver. Exxon and Chevron are gearing up to build natural gas generation “behind the meter,” i.e. serving data centers directly, so they can meet demand more quickly than if they had to hook up to the grid. The gas pipeline company Williams is also planning a Southeast expansion to serve data center demand. Energy equipment manufacturer GE Vernova is seeing orders for natural gas turbines skyrocket.
There are layers to this debate. Should policymakers require hyperscalers to bring online new sources of clean energy to power their data centers, or will that prove counterproductive and “dampen investment in new industries” — a trade-off familiar to anyone following the back-and-forth over clean hydrogen? And is it possible that all the fuss about data center demand is overblown? Is there even a business case for AI that supports this buildout?
The incoming Trump administration has promised to “unleash U.S. energy dominance” and “make America the AI capital of the world,” so it’s likely this will continue to be one of the top questions for climate hawks for the foreseeable future.
The debate over the state of electric vehicle sales didn’t start in 2024, but headlines this year continued to sow confusion over whether or not EVs are catching on in the way climate advocates — and carmakers — hoped.
Each of the big three automakers, as well as most of the remaining companies serving North America, revised down their EV production plans this year, citing a waning market. In July, General Motors CEO Mary Barra said the company wasn’t going to hit its goal of producing a million EVs per year in North America by 2025. “We’re seeing a little bit of a slowdown here,” she said on CNBC. “The market just isn’t developing. But we will get there.” Ford cancelled plans to produce an electric three-row SUV, delayed its release of an electric medium-sized pickup truck until 2027, and paused production of the F-150 Lightning, and has decided to shift its near-term focus to selling hybrids.
Among non-U.S. automakers, Stellantis delayed the release of a new EV Ram pickup truck and will put out a hybrid version instead. Volkswagen delayed the North America release of an electric sedan. Several luxury automakers, including Aston Martin and Bentley, delayed the release of their first EVs until 2027. Mercedes-Benz once strived to have EVs make up 50% of its sales in 2025 — now it’s trying to hit that mark in 2030. Tesla sales also slowed significantly in the first half of the year. CEO Elon Musk cancelled plans to build a new low-cost EV.
But while sales numbers may not have met individual automakers’ expectations, overall sales continued to grow. “For every sign of an EV slowdown, another suggests an adolescent industry on the verge of its next growth spurt,” Bloomberg reported mid-way through the year. During the third quarter, GM saw record EV sales. Honda’s debut EV, the Prologue, jumped up the charts to become one of the top-selling offerings on the market. After looking at third quarter numbers, Cox Automotive analysts opined that “a 10% [market] share is well within reach.”
We’ll have to see how Trump’s plans to eliminate consumer subsidies for EVs changes that outlook, but expect there to be plenty more fodder for debate.
With continued subsidies a big “if” going into next year, deep-pocketed purchasers will have outsized impact.
As Donald Trump prepares to take office (again), the future of the tax policy that underlies clean energy development in the United States has never been more in doubt. Will the clean energy tax credits survive? What about advanced manufacturing? Or will it just be the electric vehicle credits that get tossed aside?
In any case, one thing seems far closer to certain: Big companies, especially large technology companies, will continue to buy renewable and clean power to fulfill their own sustainability goals and keep up their massively expanding data center operations. For them, speed may be the thing that matters most, and reasonable costs and carbon abatement will have to come along with it.
From 2025 to 2028, Morgan Stanley estimates that there will be 57 gigawatts worth of demand from new data centers, with around 6 gigawatts of that currently under construction, and a substantial shortfall in available power to build everything hyperscale technology companies want. This means that there will be a huge need to buy power, no matter the tax credit situation, which would mean continued upward pressure on prices.
Even before the election, power purchase agreement prices for solar power were creeping up due to tariffs on solar equipment, according to LevelTen Energy. Those will likely be maintained and could be ramped up in the new administration.
“Repeal of the tech neutral tax credits and of the manufacturing production tax credits has the potential to increase PPA prices by almost 40%,” Nidhi Thakar, the senior vice president for policy of the Clean Energy Buyers Association, told me, referring to two of the most powerful provisions of the Inflation Reduction Act. She added that repeal would “essentially have an inflationary effect.”
“We have this opportunity right now to capture that economic development if we do things right,” Thakar said. “That is going to require having critical policies in place that are going to support the deployment of more clean firm resources on the grid.”
At least so far, the prospect of repeal has not slowed energy procurement among the biggest buyers. This month, Alphabet announced a $20 billion investment plan with Intersect Power and TPG to build carbon-free power near datacenters with the hope of bringing power and data centers online more quickly. Meta, meanwhile, announced earlier in December that it would build a $10 billion data center campus in Northeast Louisiana, complete with gas and renewable power provided by Entergy, the local utility. The project will come with “at least” 1.5 gigawatts of new renewable power, Entergy said; it also filed an application with the Louisiana utilities regulator for over 2 gigawatts of new gas-fired power plants, including two plants adjacent to the data center site, according to S&P Global Commodities Insights.
While a “double digit” increase in power purchase agreement sale prices could result from tax credits vanishing, there is still “more demand for renewable energy than supply for a whole bunch of reasons,” Peter Freed, the former director of energy strategy at Meta and the founding director of the consultancy Near Horizon Group, told me.
“Obviously the tax credits are pretty central to the pricing on projects,” he said.
Freed was enthusiastic about grid technologies that could enhance capacity, but he also acknowledged “it is very likely we’re going to have a variety of compromises that have to be made over the course of next seven, eight, nine years, in terms of how we’re going to accommodate load that’s coming in the cleanest possible way.”
“That probably means we’re seeing more gas built,” he added.
A significant portion of that gas could be built on-site. Anything involving the grid — whether fossil or renewable — involves large investments of cash and time for hyperscalers and developers. “Given the increasing time required to connect to power grids, especially in the U.S., we believe there could be more upcoming ‘off grid’ approaches to powering data centers,” Morgan Stanley analyst Stephen Byrd wrote in a note to clients. “Batteries and smaller gas-fired turbines could be combined with large combined cycle natural gas turbines to provide a robust power source.”
Elon Musk’s xAI has done this the quick-and-dirty way by installing mobile natural gas generators to power its facility in Memphis. GE Vernova, the turbine manufacturer, is also “having direct conversations with hyperscalers for gas orders,” according to Jefferies analyst Julien Dumoulin-Smith in a note to clients, with the first order from a hyperscaler possibly coming in the second half of next year.
Gas isn’t the only answer, however — at least not on its own. A group of energy researchers from Stripe, Paces, and Scale Microgrids, wrote in a white paper published mid-December saying that solar microgrids could provide a “fast, scalable, clean, and cheap enough” option for data center power.
These “off-grid solar microgrids” could potentially be put into operation in “around two years” and would combine solar panels, batteries, and some natural gas backup. Installed across the Southwest, they would be able to power some 1,200 gigawatts of data center demand with 90% solar power, according to Scale Microgrids’ Duncan Campbell, at costs below repowering Three Mile Island. A 44% solar system would be “essentially the same cost” as off-grid gas turbines, the whitepaper said.
No matter what solution hyperscalers pursue — bringing their own power behind the grid, locating near power on the grid, or building out more clean, firm power on local grids — the question will ultimately always be how fast they can get online.
“I think people are initially thinking about colocating a large load with a project — renewable, gas, or anything else — as a fact track to getting load online, and there’s some truth to that,” Freed told me.
“My perspective as someone who is adding new load is that you should be indifferent to location for generation,” Freed said. “What you really should be caring about is when you can interconnect and turn lights on at the scale you desire.”